Tree Genetics & Genomes

, 13:106 | Cite as

Flow cytometry and cytogenetic tools in eucalypts: genome size variation × karyotype stability

  • Guilherme Mendes Almeida Carvalho
  • Carlos Roberto CarvalhoEmail author
  • Fernanda Aparecida Ferrari Soares
Original Article
Part of the following topical collections:
  1. Genome Biology


The eucalypts comprise a group of woody plants used in commercial forest plantations owing to their high growth rates, adaptability to various ecological conditions and multiple applications. Despite the enormous amount of molecular data available for eucalypts, a basic understanding of the nature of its genome still requires information regarding the DNA amount in the genus. In this work, we estimated the genome size and base composition of 25 eucalypt species. With a comparative karyotype approach, we aimed to identify possible chromosomal alterations correlated with the genome size variation. Classical cytogenetic and genomic in situ hybridization experiments were conducted for this purpose. The studied species showed genome size ranging from 2C = 0.91 (Corymbia intermedia) to 2C = 1.37 pg (Eucalyptus paniculata) and AT/CG ratios varying from AT = 61.3 (Eucalyptus urophylla) to AT = 62.85% (C. intermedia). Comparative karyotype analysis revealed no remarkable differences in chromosome number (2n = 22) or morphology among eucalypt species despite considerable differences in nuclear DNA content. The genome in situ hybridization method did not distinguish non-homologous chromosomal regions of Eucalyptus baileyana and Corymbia citriodora, despite the difference of 0.45 pg between their genome sizes. The results found in the present work corroborate the consideration of small and dispersed DNA changes as the main cause of genome size variation in eucalypts.


Eucalyptus Corymbia 2C-value Base composition Chromosome Karyotype 



The authors would like to thank the Conselho Nacional de Pesquisa (CNPq, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil) for providing financial support for this study. We are also grateful to Dr. Dário Grattapaglia (Plant Genetics Laboratory, Embrapa, Brasília, Brazil), Instituto de Pesquisas Florestais (IPEF, Brazil), Sociedade de Investigações Florestais (SIC, Brazil) and the company Klabin (Brazil) for kindly providing the eucalyptus seeds.

Authors’ contribution

GMAC and CRC designed and conducted classical cytogenetic and flow cytometry experiments. GMAC, CRC and FAFS designed and conducted the GISH experiment. GMAC and CRC wrote the manuscript. All authors participated in the analysis of this study and read the final manuscript.


  1. Azmi A, Noin M, Landré P, Prouteau M, Boudet AM, Chriqui D (1997) High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tiss Org 51:9–16. CrossRefGoogle Scholar
  2. Bachir O, Abdellah B (2006) Chromosome numbers of the 59 species of Eucalyptus L’Herit. (Myrtaceae). Caryologia 59:207–212CrossRefGoogle Scholar
  3. Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, December 2012). Kew Royal Botanic Gardens. Accessed June 23 2016
  4. Brezáni V, Šmejkal K (2013) Secondary metabolites isolated from the genus Eucalyptus. Curr Top Med Chem 7:65–95Google Scholar
  5. Brooker MIH (2000) A new classification of the genus Eucalyptus L'Hér. (Myrtaceae). Aust Syst Bot 13:79–148. CrossRefGoogle Scholar
  6. Cai Z, Liu H, He Q, Pu M, Chen J, Lai J, Li X, Jin W (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genomics 15:1–16. Google Scholar
  7. Carvalho CR, Saraiva LS (1997) High-resolution HKG-banding in maize mitotic chromosomes. J Plant Res 110:417–420. CrossRefGoogle Scholar
  8. Carvalho CR, Clarindo WR, Almeida PM (2007) Plant cytogenetics: still looking for the perfect mitotic chromosomes. Nucleus 50:453–462Google Scholar
  9. Carvalho GMA, Carvalho CR (2016) The eucalypt karyogram resolved. Botany 94:411–416. CrossRefGoogle Scholar
  10. Čížková J, Hřibová E, Christelová P, Van den Houwe I, Häkkinen M, Roux N, Swennen R, Doležel J (2015) Molecular and cytogenetic characterization of wild Musa species. PLoS One 10:e0134096. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clarindo WR, Carvalho CR (2006) A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora. Cytologia 71:243–249. CrossRefGoogle Scholar
  12. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytom Part A 51A:127–128. CrossRefGoogle Scholar
  13. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (ed) Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–65.
  14. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85:625–631. CrossRefGoogle Scholar
  15. Favoreto F, Carvalho C, Lima A, Ferreira A, Clarindo W (2012) Genome size and base composition of Bromeliaceae species assessed by flow cytometry. Plant Syst Evol 298:1185–1193. CrossRefGoogle Scholar
  16. Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9:95–102. CrossRefPubMedGoogle Scholar
  17. Galbraith DW, Lambert GM (2012) High-throughput monitoring of plant nuclear DNA contents via flow cytometry. In: Normanly J (ed) High-throughput phenotyping in plants: methods and protocols. Humana Press, Totowa, NJ, pp 311–325. CrossRefGoogle Scholar
  18. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. CrossRefPubMedGoogle Scholar
  19. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. CrossRefPubMedGoogle Scholar
  20. Gao A, Shi J, Liang X (2016) Research on meiotic chromosome pairing in Roegneria sinica var. media evaluated using genomic in situ hybridization. Plant Biotechnol Rep 10:129–139. CrossRefGoogle Scholar
  21. Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626. CrossRefPubMedGoogle Scholar
  22. Gonzalez-Orozco CE, Pollock LJ, Thornhill AH et al (2016) Phylogenetic approaches reveal biodiversity threats under climate change. Nature Clim Change 6:1110–1114. CrossRefGoogle Scholar
  23. Grattapaglia D, Bradshaw HD Jr (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24:1074–1078. CrossRefGoogle Scholar
  24. Grattapaglia D, Mamani EMC, Silva-Junior OB, Faria DA (2015) A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Mol Ecol Resour 15:437–448. CrossRefPubMedGoogle Scholar
  25. Gregory TR (2005) Preface: the evolution of the Evolution of the Genome. In: The evolution of the genome. Academic Press, Burlington, pp vii–vxi. Google Scholar
  26. Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613CrossRefPubMedGoogle Scholar
  27. Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, CalifGoogle Scholar
  28. Holman JE, Hughes JM, Fensham RJ (2003) A morphological cline in Eucalyptus: a genetic perspective. Mol Ecol 12:3013–3025. CrossRefPubMedGoogle Scholar
  29. Hudson CJ, Freeman JS, Myburg AA, Potts BM, Vaillancourt RE (2015) Genomic patterns of species diversity and divergence in Eucalyptus. New Phytol 206:1378–1390. CrossRefPubMedGoogle Scholar
  30. Kersting AR, Mizrachi E, Bornberg-Bauer E, Myburg AA (2015) Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus. New Phytol 206:1328–1336. CrossRefPubMedGoogle Scholar
  31. Kim S, Gim T, kang SM (2015) Versatile, Tannic Acid-Mediated Surface PEGylation for Marine Antifouling Applications. ACS Appl. Mater. Interfaces 7(12):6412–6416.
  32. Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998. CrossRefGoogle Scholar
  33. Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co, KGaA, pp 153–176. CrossRefGoogle Scholar
  34. Liu B, Poulsen EG, Davis TM (2016) Insight into octoploid strawberry (Fragaria) subgenome composition revealed by GISH analysis of pentaploid hybrids. Genome 59:79–86. CrossRefPubMedGoogle Scholar
  35. Loureiro J, Rodriguez E, DoleŽEl J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot-London 98:679–689. CrossRefGoogle Scholar
  36. Mahlo SM, Chauke H (2012) The effectiveness of polyethylene glycol (PEG) and polyvinyl polypyrrolidone (PVPP) on removal of tannins from leaf extracts of selected medicinal plants in Limpopo Province. Afr J Biotechnol 11:10141–10145. CrossRefGoogle Scholar
  37. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51. CrossRefPubMedGoogle Scholar
  38. Matsumoto ST, Marin-Morales MA, Ruas CF, Ruas PM (2000) Cytogenetic analysis of seven species of Eucalyptus L’Her. (Myrtaceae). Caryologia 53:205–212Google Scholar
  39. Meister A (2005) Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana. J Theor Biol 232:93–97. CrossRefPubMedGoogle Scholar
  40. Meister A, Barow M (2007) DNA Base composition of plant genomes. In: Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co, KGaA, pp 177–215. CrossRefGoogle Scholar
  41. Morgan HD, Westoby M (2005) The relationship between nuclear DNA content and leaf strategy in seed plants. Ann Bot-London 96:1321–1330CrossRefGoogle Scholar
  42. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–479CrossRefGoogle Scholar
  43. Myburg AA, Grattapaglia D, Tuskan GA et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362. PubMedGoogle Scholar
  44. Nsahlai IV, Fon FN, Basha NAD (2011) The effect of tannin with and without polyethylene glycol on in vitro gas production and microbial enzyme activity. S Afr J Anim Sci 41:337–344CrossRefGoogle Scholar
  45. Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Method Cell Biol 33:105–110CrossRefGoogle Scholar
  46. Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587. CrossRefPubMedGoogle Scholar
  47. Praça MM, Carvalho CR, Novaes CRDB (2009) Nuclear DNA content of three Eucalyptus species estimated by flow and image cytometry. Aust J Bot 57:524–531. CrossRefGoogle Scholar
  48. Praça-Fontes MM, Carvalho CR, Clarindo WR (2011) C-value reassessment of plant standards: an image cytometry approach. Plant Cell Rep 30:2303–2312. CrossRefPubMedGoogle Scholar
  49. Poggio L, Gonzalez G, Confalonieri V, Comas C, Naranjo CA (2005) The genome organization and diversification of maize and its allied species revisited: evidences from classical and FISH-GISH cytogenetic analysis. Cytogenet Genome Res 109(1–3):259–267CrossRefPubMedGoogle Scholar
  50. Puttick MN, Clark J, Donoghue PCJ (2015) Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. P Roy Soc Lond B Bio 282: 20152289.
  51. Ribeiro T, Barrela RM, Bergès H, Marques C, Loureiro J, Morais-Cecílio L, Paiva JAP (2016) Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes. Front Plant Sci 7:510. PubMedPubMedCentralGoogle Scholar
  52. Rozefelds AC (1996) Eucalyptus phylogeny and history: a brief summary. Tasforest 8:15–26Google Scholar
  53. Silva PHMD, Bouillet J-P, de Paula RC (2016) Assessing the invasive potential of commercial Eucalyptus species in Brazil: germination and early establishment. Forest Ecol Manag 374:129–135. CrossRefGoogle Scholar
  54. Slee AV, Connors J, Brooker MIH, Duffy SM, West JG (2006) EUCLID eucalypts of Australia. CSIRO Publishing, MelbourneGoogle Scholar
  55. Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Advanced Drug Delivery Reviews 54(4):453–456.
  56. Vrána J, Cápal P, Bednářová M, Doležel J (2014) Flow cytometry in plant research: a success story. In: Nick P, Opatrny Z (eds) Applied plant cell biology: cellular tools and approaches for plant biotechnology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 395–430. CrossRefGoogle Scholar
  57. Wang K, Huang G, Zhu Y (2016) Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci China Life Sci 59:112–121. CrossRefPubMedGoogle Scholar
  58. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao D, Ferguson AA, Jiang N (2016) What makes up plant genomes: the vanishing line between transposable elements and genes. BBA-Gene Regul Mech 1859:366–380. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Guilherme Mendes Almeida Carvalho
    • 1
    • 2
  • Carlos Roberto Carvalho
    • 1
    Email author
  • Fernanda Aparecida Ferrari Soares
    • 1
  1. 1.Laboratório de Citogenética e Citometria, Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Instituto Federal do Norte de Minas GeraisSalinasBrazil

Personalised recommendations