Tree Genetics & Genomes

, 13:88 | Cite as

Retrotransposon distribution and copy number variation in gymnosperm genomes

  • Angelika VoronovaEmail author
  • Viktorija Belevich
  • Anna Korica
  • Dainis Rungis
Original Article
Part of the following topical collections:
  1. Genome Biology


Retrotransposable elements (REs) and related sequences form a large proportion of conifer genomes. During genome evolution, some RE sequences are degraded or eliminated, but some are evolutionarily stable, and can be identified even in distantly related species. Use of genome sequence information from loblolly pine (Pinus taeda) enables investigation of divergent non-coding RE sequences in other pine and conifer species, including Scots pine (Pinus sylvestris). Non-specific inter-retrotransposon amplified polymorphism technique (IRAP) as well as the amplification polymorphism of 12 RE families were investigated in 80 gymnosperm species. The obtained results were compared with phylogenetic relationships among gymnosperms. Investigation of distantly related gymnosperm species reveals persistent RE sequences, such as IFG and Pineywoods, distributed among a wide range of plant lineages. RE sequence divergence was observed, reflecting periods of inactivity and degradation during speciation of pine lineages, as demonstrated by the delineation of the main pine subgenera. Intraspecific variation of 10 RE copy numbers (CN) between Scots pine individuals ranged from 8.9 to 26.6% of the overall mean estimates. CN analyses were performed in 16 additional gymnosperm species. The analysed pine species contained a similar complement of RE families; however, CN and genome occupation proportions differ. A decrease in RE CN estimates can reflect sequence divergence, associated with independent transposition events. Transposition of some REs can be induced by stress conditions; therefore, even distantly related species inhabiting extreme environments could have similar patterns or distribution of these elements.


Scots pine (Pinus sylvestris L.) Retrotransposable elements Copy number variation Gymnosperms Intraspecies genetic variation 



This study was funded by the Latvian Council of Science project “Investigation of molecular defence mechanisms in Scots pine (Pinus sylvestris L.)” (Nr. 284/2012).

Data archiving statement

The nucleotide sequences obtained in this study have been submitted to the NCBI Genbank database (accession numbers KY865037-KY865093).

Supplementary material

11295_2017_1165_MOESM1_ESM.pdf (262 kb)
ESM 1 (PDF 261 kb)
11295_2017_1165_MOESM2_ESM.pdf (481 kb)
ESM 2 (PDF 481 kb)
11295_2017_1165_MOESM3_ESM.pdf (505 kb)
ESM 3 (PDF 505 kb)
11295_2017_1165_MOESM4_ESM.pdf (325 kb)
ESM 4 (PDF 325 kb)


  1. Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. doi: 10.1186/s13100-015-0041-9
  2. Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec 2012)Google Scholar
  3. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9(9):1509–1514PubMedPubMedCentralCrossRefGoogle Scholar
  4. Biémont C (2008) Genome size evolution: within-species variation in genome size. Heredity 101:297–298PubMedCrossRefGoogle Scholar
  5. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJ (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29(12):1492–1497PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bogunic F, Muratovic E, Ballian D, Siljak-Yakovlev S, Brown S (2007) Genome size stability among five subspecies of Pinus nigra Arnold s.l. Environ Exp Bot 59:354–360CrossRefGoogle Scholar
  7. Bogunic F, Muratovic E, Brown SC, Silijak-Yakovlev S (2003) Genome size of five Pinus from Balkan region. Plant Cell Rep 22:59–63PubMedCrossRefGoogle Scholar
  8. Boutabout M, Wilhelm M, Wilhelm F-X (2001) DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res 29:2217–2222PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brown GR, Kadel EE 3rd, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159(2):799–809PubMedPubMedCentralGoogle Scholar
  10. Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buschiazzo E, Ritland C, Bohlmann J, Ritland K (2012) Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol. doi: 10.1186/1471-2148-12-8
  12. Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Hered (Edinb) 85(Pt 2):101–106CrossRefGoogle Scholar
  13. Chaparro C, Sabot F (2012) Methods and software in NGS for TE analysis. Methods Mol Biol 859:105–114PubMedCrossRefGoogle Scholar
  14. Charlesworth D, Charlesworth B (1995) Transposable elements in inbreeding and outbreeding populations. Genetics 140:415–417PubMedPubMedCentralGoogle Scholar
  15. Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH (1997) Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14(1):56–68PubMedCrossRefGoogle Scholar
  16. Chen J, Källman T, Gyllenstrand N, Lascoux M (2010) New insights on the speciation history and nucleotide diversity of three boreal spruce species and a tertiary relict. Heredity 104:3–14PubMedCrossRefGoogle Scholar
  17. Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181(4):1183–1193PubMedPubMedCentralCrossRefGoogle Scholar
  18. De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJ, Keeling CI, MacKay J, Nilsson O, Ritland K, Street N, Yanchuk A, Zerbe P, Bohlmann J (2014) Insights into conifer giga-genomes. Plant Physiol 166(4):1724–1732CrossRefGoogle Scholar
  19. DeFraia C, Slotkin RK (2014) Analysis of retrotransposon activity in plants. Methods Mol Biol 1112:195–210PubMedCrossRefGoogle Scholar
  20. Devey ME, Sewell MM, Uren TL, Neale DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99(3–4):656–662PubMedCrossRefGoogle Scholar
  21. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12(7):1075–1079PubMedPubMedCentralCrossRefGoogle Scholar
  22. Eckert AJ, Hall BD (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses. Mol Phylogenet Evol 40(1):166–182PubMedCrossRefGoogle Scholar
  23. Baidouri E, Moaine M-CC, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24:831–838PubMedPubMedCentralCrossRefGoogle Scholar
  24. Estep MC, DeBarry JD, Bennetzen JL (2013) The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Hered (Edinb) 110(2):194–204CrossRefGoogle Scholar
  25. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3(5):329–341PubMedCrossRefGoogle Scholar
  27. Flavell AJ, Pearce SR, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844PubMedCrossRefGoogle Scholar
  28. Fortune PM, Roulin A, Panaud O (2008) Horizontal transfer of transposable elements in plants. Commun Integr Biol 1(1):74–77PubMedPubMedCentralCrossRefGoogle Scholar
  29. Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18(7):1176–1188PubMedCrossRefGoogle Scholar
  30. Gabriel A, Mules EH (1999) Fidelity of retrotransposon replication. Ann N Y Acad Sci 18:108–118CrossRefGoogle Scholar
  31. Garner TW (2002) Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 45(1):212–215PubMedCrossRefGoogle Scholar
  32. Godinho S, Paulo OS, Moralis-Cecilio L, Rocheta M (2012) A new gypsy-like retroelement family in Vitis vinifera. Vitis 51(2):65–72Google Scholar
  33. Grandbastien M-A, Lucas H, Morel JB, Corinne MC, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100:241–252PubMedCrossRefGoogle Scholar
  34. Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee SM, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W (2016) Draft genome of the living fossil Ginkgo biloba. Gigascience 5(1):–49Google Scholar
  35. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10(8):551–564PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci U S A 106(42):17811–17816PubMedPubMedCentralCrossRefGoogle Scholar
  37. Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174(4):2095–2105PubMedPubMedCentralCrossRefGoogle Scholar
  38. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402PubMedCrossRefGoogle Scholar
  39. Hou Y, Zhang H, Miranda L, Lin S (2010) Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS One 5(3):e9545. doi: 10.1371/journal.pone.0009545 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  41. Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. DNA Cloning and Assembly Methods, Methods in Molecular Biology 1116:271–302. doi: 10.1007/978-1-62703-764-8_18 PubMedCrossRefGoogle Scholar
  42. Kalendar R, Schulman AH (2007) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1(5):2478–2484CrossRefGoogle Scholar
  43. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A 97(12):6603–6607PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Plant Genome Diversity Volume 1, Wendel JF, Greilhuber J, Leitch IJ, Dolezel J (eds), Springer-Verlag/Wien, pp 17-34. doi: 10.1007/978-3-7091-1130-7_2
  45. Kijima TE, Innan H (2010) On the estimation of the insertion time of LTR retrotransposable elements. Mol Biol Evol 27:896–904PubMedCrossRefGoogle Scholar
  46. Komulainen P, Brown GR, Mikkonen M, Karhu A, García-Gil MR, O'Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 07(4):667–678CrossRefGoogle Scholar
  47. Kossack DS, Kinlaw CS (1999) IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Mol Biol 39(3):417–426PubMedCrossRefGoogle Scholar
  48. Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA et al (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics. doi: 10.1186/1471-2164-11-420
  49. Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168(1):447–461PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  51. Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS (2015) Early genome duplications in conifers and other seed plants. Sci Adv. doi: 10.1126/sciadv.1501084
  52. Lin CH, Chen YC, Pan TM (2011) Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay. PLoS One 6(12):e29101. doi: 10.1371/journal.pone.0029101 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol 2:504–517PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liston A, Robinson WA, Piñero D, Alvarez-Buylla ER (1999) Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol 11(1):95–109PubMedCrossRefGoogle Scholar
  55. Lockton S, Gaut BS (2010) The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol Biol. doi: 10.1186/1471-2148-10-10
  56. Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ (2014) Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 9(9):e107679. doi: 10.1371/journal.pone.0107679 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869PubMedPubMedCentralCrossRefGoogle Scholar
  58. Magbanua ZV, Ozkan S, Bartlett BD, Chouvarine P, Saski CA, Liston A, Cronn RC, Nelson CD, Peterson DG (2011) Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of loblolly pine. PLoS One 6(1):e16214. doi: 10.1371/journal.pone.0016214 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Correction: transposable elements contribute to activation of maize genes in response to abiotic stress. PLOS Genet 11(10):e1005566PubMedPubMedCentralCrossRefGoogle Scholar
  60. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–780PubMedCrossRefGoogle Scholar
  61. Michael TP (2014) Plant genome size variation: bloating and purging DNA. Brief Funct Genomics 13:308–317PubMedCrossRefGoogle Scholar
  62. Millar CI (1998) Early evolution of pines. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, CambridgeGoogle Scholar
  63. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274PubMedCrossRefGoogle Scholar
  64. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461(7262):427–430PubMedCrossRefGoogle Scholar
  65. Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77(3):261–275PubMedCrossRefGoogle Scholar
  66. Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10(2):149–155PubMedCrossRefGoogle Scholar
  67. Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS One 4(2):e4332. doi: 10.1371/journal.pone.0004332 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Murray BG (1998) Nuclear DNA amounts in gymnosperms. Ann Bot 82(Supplement A):3–15CrossRefGoogle Scholar
  69. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125PubMedPubMedCentralCrossRefGoogle Scholar
  70. Murray BG (2012) Karyotype variation and evolution in gymnosperms. In: Leitch IJ, Dolezel J, Greilhuber J (eds) Diversity of plant genomes. Springer-Verlag, New York, pp 231–243Google Scholar
  71. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. doi: 10.1038/nature12211
  72. Palmé AE, Pyhäjärvi T, Wachowiak W, Savolainen O (2009) Selection on nuclear genes in a Pinus phylogeny. Mol Biol Evol 26(4):893–905PubMedCrossRefGoogle Scholar
  73. Park M, Jo S, Kwon JK, Park J, Ahn JH, Kim S, Lee YH, Yang TJ, Hur CG, Kang BC, Kim BD, Choi D (2011) Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics. doi: 10.1186/1471-2164-12-85
  74. Parks M, Cronn R, Liston A (2012) Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol. doi: 10.1186/1471-2148-12-100
  75. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  76. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  77. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214CrossRefGoogle Scholar
  78. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16(10):1262–1269PubMedPubMedCentralCrossRefGoogle Scholar
  79. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15(1):8–15CrossRefGoogle Scholar
  80. Preston BD (1996) Error-prone retrotransposition: rime of the ancient mutators. Proc Natl Acad Sci U S A 93:7427–7431PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pyhäjärvi T, García-Gil MR, Knürr T, Mikkonen M, Wachowiak W, Savolainen O (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177(3):1713–1724PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46:21–42PubMedCrossRefGoogle Scholar
  83. Rocheta M, Cordeiro J, Oliveira M, Miguel C (2007) PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. Planta 225:551–562PubMedCrossRefGoogle Scholar
  84. Sabot F, Schulman AH (2007) Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genomics. doi: 10.1186/1471-2164-8-247
  85. Sabot F, Sourdille P, Bernard M (2005) Advent of a new retrotransposon structure: the long form of the Veju elements. Genetica 125:325–332PubMedCrossRefGoogle Scholar
  86. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  87. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45PubMedCrossRefGoogle Scholar
  88. Savolainen O, Pyhajarvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10:162–167PubMedCrossRefGoogle Scholar
  89. Schrider DR, Hahn MW (2010) Gene copy-number polymorphism in nature. Proc R Soc B Biol Sci 277(1698):3213–3221CrossRefGoogle Scholar
  90. Seong D, Offner S (2013) A phylogenetic study of conifers describes their evolutionary relationships and reveals potential explanations for current distribution patterns. J Emerg Investigators 10:1–9Google Scholar
  91. Shirasu KA, Schulman H, Lahaye T, Schulze-Lefert P (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915PubMedPubMedCentralCrossRefGoogle Scholar
  92. Skipars V, Rungis D (2011) Detection of Heterobasidion annosum in Scots pine trees using a polymerase chain reaction based method. Balt For 17(1):2–7Google Scholar
  93. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285PubMedCrossRefGoogle Scholar
  94. Smýkal P, Kalendar R, Ford R, Macas J, Griga M (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity 103:157–167. doi: 10.1038/hdy.2009.45 PubMedCrossRefGoogle Scholar
  95. Soltis PS, Soltis DE (2013) A conifer genome spruces up plant phylogenomic. Genome Biol. doi: 10.1186/gb-2013-14-6-122
  96. Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, Martínez-García PJ, Sezen UU, Marçais G, Jermstad K, McGuire PE, Loopstra CA, Davis JM, Eckert A, de Jong P, Yorke JA, Salzberg SL, Neale DB, Langley CH (2016) Sequence of the sugar pine megagenome. Genetics 204(4):1613–1626PubMedCrossRefGoogle Scholar
  97. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28:1102–1104PubMedGoogle Scholar
  98. Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR (2015) The plant genome integrative explorer resource: New Phytol 208(4):1149–1156PubMedCrossRefGoogle Scholar
  99. Sveinsson S, Gill N, Kane NC, Cronk Q (2013) Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species. BMC Genomics 14:502. doi: 10.1186/1471-2164-14-502 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tam SM, Causse M, Garchery C, Burck H, Mhiri C, Grandbastien MA (2007) The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol 20(3):1056–1072PubMedCrossRefGoogle Scholar
  101. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461(7262):423–426PubMedCrossRefGoogle Scholar
  104. Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873PubMedCrossRefGoogle Scholar
  105. Valkonen JPT, Nygren M, Ylonen A, Mannonen L (1994) Nuclear DNA content of Pinus sylvestris (L.) as determined by laser flow cytometry. Genetica 92:203–207CrossRefGoogle Scholar
  106. Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol 61:275–291PubMedCrossRefGoogle Scholar
  107. Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci U S A 103:17638–17643PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20(4):528–540PubMedCrossRefGoogle Scholar
  109. Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics. doi: 10.1186/1471-2164-8-218
  110. Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10(4):937–951CrossRefGoogle Scholar
  111. Voronova A, Rungis D (2013) Development and characterisation of IRAP markers from expressed retrotransposon-like sequences in Pinus sylvestris L. Proc Latv Acad Sci Section B Nat Exact Appl Sci 67(6):485–492Google Scholar
  112. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci U S A 89:7124–7128PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wegrzyn JL, Lin BY, Zieve JJ, Dougherty WM, Martínez-García PJ, Koriabine M, Holtz-Morris A, deJong P, Crepeau M, Langley CH, Puiu D, Salzberg SL, Neale DB, Stevens KA (2013) Insights into the loblolly pine genome: characterization of BAC and fosmid sequences. PLoS One 8(9):e72439. doi: 10.1371/journal.pone.0072439 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, Holt C, Yandell M, Zimin AV, Yorke JA, Crepeau MW, Puiu D, Salzberg SL, Dejong PJ, Mockaitis K, Main D, Langley CH, Neale DB (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196(3):891–909PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wessler SR (2006) Eukaryotic transposable elements: teaching old genomes new tricks. In: Caporale L (ed) The implicit genome. Oxford University Press, USAGoogle Scholar
  116. Wheeler NC, Guries RP (1982) Biogeography of lodgepole pine. Can J Bot 60:1805–1814CrossRefGoogle Scholar
  117. Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982PubMedCrossRefGoogle Scholar
  119. Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722PubMedCrossRefGoogle Scholar
  120. Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107(1–3):139–148PubMedCrossRefGoogle Scholar
  121. Wright SI, Quang HL, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis. Genetics 158:1279–1288PubMedPubMedCentralGoogle Scholar
  122. Wu C, Wang Y, Hsu C, Lin C, Chaw S (2011) Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol 3:1284–1295PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. doi: 10.1186/1471-2105-13-134
  124. Yin H, Liu J, Xu Y, Liu X, Zhang S, Ma J, Du J (2013) TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato. PLoS One 8(7):e68587. doi: 10.1371/journal.pone.0068587 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang QJ, Gao LZ (2016) Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA- genome Oryza species. BioRxiv. doi:
  126. Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci U S A 101:5589–5594PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA, Nikiforova SV, Lockhart PJ (2011) Systematic error in seed plant phylogenomics. Genome Biol Evol 3:1340–1348PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196(3):875–890PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zuccolo A, Scofield DG, De Paoli E, Morgante M (2015) The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution. Gene 568(1):89–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Genetic Resource CentreLatvian State Forest Research Institute “Silava”SalaspilsLatvia

Personalised recommendations