Skip to main content

Advertisement

Log in

De novo transcriptome assembly and development of SSR markers of oaks Quercus austrocochinchinensis and Q. kerrii (Fagaceae)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The commonly found oak species Quercus kerrii and the rare species Quercus austrocochinchinensis (subgenus Cyclobalanopsis) are genetically close and found in sympatry in Indo-China with morphological evidences of hybridization. The two species provide an opportunity to investigate the mechanism of speciation and to study how species integrity is maintained in the subgenus Cyclobalanopsis. However, the genomic resources are lacking in Cyclobalanopsis to produce enough molecular markers. We performed RNA-seq on Q. austrocochinchinensis and Q. kerrii by pooling tissues of new and old leaves, roots, and stems. A total of 14,247,444/12,900,500 (Q. austrocochinchinensis/Q. kerrii) clean reads were obtained from 2 × 300 bp Illumina MiSeq sequencing platform. De novo assembly produced 79,312/81,921 contigs representing 49,845/50,767 unigenes. The Ka/Ks estimation and following enrichment analysis identified 24 genes. Most of them were related to biosynthesis and growth, which may be involved in the process of speciation. 5196/5021 primer pairs were successfully designated from 13,762/13,430 putative loci with microsatellite repeats. We selectively screened 215 polymorphic simple sequence repeat (SSR) loci according to the list of 29,893 pairwise orthologous genes predicted by a reciprocal best hits algorithm. From the 215 loci, we selected 102 well-amplified SSR primers for polymorphic SSR locus analysis. We found 18 highly polymorphic loci and suitable for population genetic analysis, with 10 loci that had a diagnostic power that may be useful in studying hybridization. Finally, in silico PCR was performed using two Fagaceae species Quercus robur and Castanea mollissima. Our study provides a set of useful SSR markers and can enable further functional and comparative genomic research on the Quercus subgenus Cyclobalanopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC bioinformatics 9:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y (1998) Predicting function: from genes to genomes and back. J Mol Biol 283:707–725

    Article  CAS  PubMed  Google Scholar 

  • Castoe TA, Poole AW, de Koning AP, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN et al (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One 7:e30953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatwin WB, Carpenter KK, Jimenez FR, Elzinga DB, Johnson LA, Maughan PJ (2014) Microsatellite primer development for post oak, Quercus stellata (Fagaceae). Appl Plant Sci 2:1400070

    Article  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Deng M (2007) Anatomy, taxonomy, distribution & phylogeny of Quercus subg. Cyclobalanopsis (Oersted) Schneid. (Fagaceae). Kunming Institute of Botany, Chinese Academy of Sciences Ph.D

  • Deng M, Zhou Z, Li Q (2013) Taxonomy and systematics of Quercus subgenus Cyclobalanopsis. International Oaks 24:48–60

    Google Scholar 

  • Deng M, Hipp A, Song Y, Li Q, Coombes A, Cotton A (2014) Leaf epidermal features of Quercus subgenus Cyclobalanopsis (Fagaceae) and their systematic significance. Bot J Linn Soc 176:224–259

    Article  Google Scholar 

  • Derory J, Léger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol 170:723–738

    Article  CAS  PubMed  Google Scholar 

  • Eschbach E, Schöning S (2013) Identification of high-resolution microsatellites without a priori knowledge of genotypes using a simple scoring approach. Methods Ecol Evol 4:1076–1082

    Article  Google Scholar 

  • Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  PubMed  Google Scholar 

  • Gailing O, Curtu AL (2014) Interspecific gene flow and maintenance of species integrity in oaks. Ann For Res 57:8–18

    Google Scholar 

  • Gomez-Garay A, Bueno A, Pintos B (2013) Identification of DNA-microsatellite markers for the characterization of somatic embryos in Quercus suber. Methods Mol Biol 1006:121–129

    Article  CAS  PubMed  Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Kew, London

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Ge X, Sun M (2000) Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. BioTechniques 28:432–434

    PubMed  Google Scholar 

  • Isagi Y, Suhandono S (1997) PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Mol Ecol 6:897–899

    Article  CAS  PubMed  Google Scholar 

  • Ishida TA, Hattori K, Sato H, Kimura MT (2003) Differentiation and hybridization between Quercus crispula and Q. dentata (Fagaceae): insights from morphological traits, amplified fragment length polymorphism markers, and leafminer composition. Am J Bot 90:769–776

    Article  PubMed  Google Scholar 

  • John JS (2011). SeqPrep. Available: https://github.com/jstjohn/SeqPrep.

  • Joshi N, Fass J (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33). Available at https://github.com/najoshi/sickle.

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Lagache L, Klein EK, Ducousso A, Petit RJ (2014) Distinct male reproductive strategies in two closely related oak species. Mol Ecol 23:4331–4343

    Article  PubMed  Google Scholar 

  • Lepais O, Gerber S (2011) Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution 65:156–170

    Article  PubMed  Google Scholar 

  • Ma H, Jiang W, Liu P, Feng N, Ma Q, Ma C, Li S, Liu Y, Qiao Z, Ma L (2014) Identification of transcriptome-derived microsatellite markers and their association with the growth performance of the mud crab (Scylla paramamosain). PLoS One 9:e89134

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikheyev AS, Vo T, Wee B, Singer MC, Parmesan C (2010) Rapid microsatellite isolation from a butterfly by de novo transcriptome sequencing: performance and a comparison with AFLP-derived distances. PLoS One 5:e11212

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100

    Article  PubMed  Google Scholar 

  • Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24:319–324

    Article  CAS  PubMed  Google Scholar 

  • Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    Article  CAS  PubMed  Google Scholar 

  • Nixon KC (1997) Quercus. In: Committee Flora of North America Editorial (ed) Flora of North America. Oxford University Press, New York, pp. 436–437

    Google Scholar 

  • Pereira-Leal JB, Abreu IA, Alabaça CS, Almeida MH, Almeida P, Almeida T, Amorim MI, Araújo S, Azevedo H, Badia A (2014) A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics 15:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider CJ (2000) Natural selection and speciation. Proc Natl Acad Sci U S A 97:12398–12399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzler JP, Steinbrecher R, Zimmer I, Steigner D, Fladung M (2004) Hybridization of European oaks (Quercus ilex, Q. robur) results in a mixed isoprenoid emitter type. Plant Cell Environ 27:585–593

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Schuler GD (1997) Sequence mapping by electronic PCR. Genome Res 7:541–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodenes C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168:1615–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Deng M, Hipp AL, Li Q (2015) Leaf morphological evidence of natural hybridization between two oak species (Quercus austrocochinchinensis and Q. kerrii) and its implications for conservation management. Eur J Forest Res 134:139–151

    Article  CAS  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glossl J (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Tamaki I, Okada M (2014) Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus Cyclobalanopsis), is the result of interspecific introgressive hybridization. Tree Genet Genomes 10:989–999

    Article  Google Scholar 

  • Tang J, Baldwin SJ, Jacobs JM, van der Linden CG, Voorrips RE, Leunissen JA, van Eck H, Vosman B (2008) Large-scale identification of polymorphic microsatellites using an in silico approach. BMC bioinformatics 9:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  CAS  PubMed  Google Scholar 

  • Torre S, Tattini M, Brunetti C, Fineschi S, Fini A, Ferrini F, Sebastiani F (2014) RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS One 9:E112487

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovar-Sanchez E, Oyama K (2004) Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am J Bot 91:1352–1363

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes Genet Syst 83:179–187

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Le Provost G, Leger V, Klopp C, Noirot C, Frigerio JM, Salin F, Salse J, Abrouk M, Murat F et al (2010) Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 11:650

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Via S (2009) Natural selection in action during speciation. Proc Natl Acad Sci 106(Suppl 1):9939–9946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukosavljev M, Esselink GD, van ‘t Westende WP, Cox P, Visser RG, Arens P, Smulders MJ (2015) Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Mol Ecol Resour 15:17–27

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xie Y (2004) China species red list. Higher Education Press, Beijing, p. 313

    Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Xiao L, Wang D, Fang C, Liu Q, Li Z, Liu X, Zhang Y, Li S, Lin H (2014) Transcriptome analysis of the Trachinotus ovatus: identification of reproduction, growth and immune-related genes and microsatellite markers. PLoS One 9:e109419

    Article  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Natural Science Foundation of China (31270267) and the Shanghai Municipal Administration of Forestation and City Appearances (G142430, G162404, G162405). The authors are thankful to Mr. Allen Coombes of Benemerita Universidad Autónoma de Puebla for helping revise the early version of the manuscript and are also thankful to Mr. Federico Sebastiani of Italian National Research Council for kindly providing the unigene data of Quercus pubescens.

Authors’ contributions

MA and MD conceived/designed the experiments, analyzed the data, and wrote the paper. MA and SSZ performed the experiments. MD and YGS were responsible for the field collections and growing the seedlings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Deng.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by A. Kremer

Data achieving statement

The original RNA-seq data was deposited to the Sequence Read Archive (SRA) of the National Centre of Biotechnology Information (NCBI) under the accession numbers SRP057982 and SRP058226. The Transcriptome Shotgun Assembly projects have been deposited at GenBank under the accession numbers GEUS00000000 and GEUR00000000.

Electronic supplementary material

Fig. S1

Sequence length distribution of the assembled unigenes of Q. austrocochinchinensis and Q. kerrii. The x-axis represents sequence length, and the y-axis represents the number of unigenes. (PDF 172 kb)

Fig. S2

Gene Ontology (GO) annotations of unigenes. Results were summarized into three main categories: biological processes, cellular components and molecular function. (PDF 753 kb)

Table S1

List of Reciprocal Best Hits of Q. austrocochinchinensis and Q. kerrii. (XLSX 681 kb)

Table S2

E-value and similarity distribution of unigenes annotated in the NR database (DOCX 13 kb)

Table S3

Proportion of matched unigenes in the NR database (DOCX 15 kb)

Table S4

List of SSR primer pairs derived from Q. austrocochinchinensis and Q. kerrii transcriptome. (XLSX 58 kb)

Table S5

The statistical parameters and the molecular weights of 102 validated primer pairs using eight individuals of each species. (XLSX 1162 kb)

Table S6

GO annotations of unigenes with Ka/Ks > 0.5, and the results of following enrichment analysis using Fisher’s exact test. (XLSX 22 kb)

Table S7

In silico PCR analysis using the primers of Q. austrocochinchinensis and Q. kerrii against Q. robur and Castanea mollissima. (XLSX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, M., Deng, M., Zheng, SS. et al. De novo transcriptome assembly and development of SSR markers of oaks Quercus austrocochinchinensis and Q. kerrii (Fagaceae). Tree Genetics & Genomes 12, 103 (2016). https://doi.org/10.1007/s11295-016-1060-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1060-5

Keywords

Navigation