Tree Genetics & Genomes

, 12:97 | Cite as

Genome-wide analysis of the terpene synthase gene family in physic nut (Jatropha curcas L.) and functional identification of six terpene synthases

  • Wangdan Xiong
  • Pingzhi Wu
  • Yongxia Jia
  • Xiaoyi Wei
  • Liangxiong Xu
  • Yanfang Yang
  • Deyou Qiu
  • Yaping Chen
  • Meiru Li
  • Huawu Jiang
  • Guojiang WuEmail author
Original Article
Part of the following topical collections:
  1. Genome Biology


Plant terpenes constitute a large class of compounds and have numerous biological roles as either primary or secondary metabolites. Terpene synthases (TPSs) play key roles on catalyzing the formation of different terpenes; they are divided into seven subfamilies based on sequence relatedness (TPSa–h). TPS-a proteins catalyze the formation of sesquiterpenes and diterpenes in plants. Physic nut (Jatropha curcas L.) is an attractive biofuel tree, but its seeds contain diterpene derivatives, which make them inedible for animals. In this study, 59 putative TPS genes (JcTPS01 to JcTPS59) were identified in the physic nut genome, and 26 belong to the TPS-a subfamily. Eight among the 26 TPS-a genes showed expression in developing seeds of physic nut in the present study. After heterologous expression of these eight genes in Escherichia coli and in vitro enzyme assays, six were shown to have TPS activities. Two (JcTPS09 and JcTPS11) catalyzed the production of diterpene casbene, which was consistent with earlier findings. The other four (JcTPS02, 23, 55, and 56) catalyzed the production of sesquiterpenes. These results may facilitate the efforts for identifying TPS genes involving the physic nut terpene synthesize.


Physic nut Terpene synthase Catalytic assay Diterpene Sesquiterpene 



This work was supported by the National Natural Science Foundation of China (No. 31270705). Thanks to Dr. Feng Chen from the University of Tennessee, Knoxville for giving some helpful suggestions and language editing. We also thank Dr. Feng Chen for kindly providing the plasmid of SmMTPSL17-TOPO.

Data archiving statement

All identified amino acid of TPS gene sequences were deposited into the NCBI database ( The accession numbers are listed in Fig. S1.

Supplementary material

11295_2016_1054_MOESM1_ESM.docx (29 kb)
Fig. S1 The information of putative TPS genes in physic nut. (DOCX 28 kb)
11295_2016_1054_MOESM2_ESM.docx (93 kb)
Fig. S2 Sequence alignments of JcTPS proteins. (DOCX 93 kb)
11295_2016_1054_Fig6_ESM.gif (77 kb)
Fig. S3

Gene components of physic nut cluster region on scaffold 123_27 and castor bean cluster region on scaffold 30169. The orthologous genes based on the phylogenetic analysis were indicated by lines. ADH, alcohol dehydrogenase; AT, acyl-transferase; CS, casbene synthase; CYP, cytochrome P450; NCS, neo-cembrene synthase. (GIF 76 kb)

11295_2016_1054_MOESM3_ESM.tif (1.2 mb)
High resolution image (TIFF 1249 kb)
11295_2016_1054_Fig7_ESM.gif (110 kb)
Fig. S4

Proteins of recombinant synthases and analysis by SDS–PAGE (7.5 %). The gel was stained with Coomassie Brilliant Blue R-250. Lane 1, protein standard ladder; lanes 2 and 3, soluble and insoluble fractions, respectively, from lysate of E. coli BL21 transformed with native plasmid pET-32a; lanes 4 and 5, soluble and insoluble fractions, respectively, from lysate of E. coli BL21 expressing recombinant protein; lane 6, purified recombinant protein. (GIF 110 kb)

11295_2016_1054_MOESM4_ESM.tif (3.4 mb)
High resolution image (TIFF 3459 kb)
11295_2016_1054_Fig8_ESM.gif (50 kb)
Fig. S5

Gas chromatography-mass spectrometry (GC-MS) analysis of the diterpene products formed by the recombinant proteins in vitro assays. a Gas chromatograms showing terpene yielded by recombinant JcTPS09, JcTPS11, and RcCS3, using GGPP as substrate. Species: Jatropha curcas (Jc), Ricinus communis (Rc). b Mass spectrum of the substances in the indicated peaks of the chromatograms. (GIF 50 kb)

11295_2016_1054_MOESM5_ESM.tif (701 kb)
High resolution image (TIFF 700 kb)
11295_2016_1054_Fig9_ESM.gif (14 kb)
Fig. S6

Unrooted phylogenetic tree of TPS-a proteins. The amino acid sequences of TPS proteins were aligned using Clustal X 1.83 and the compressed phylogenetic tree was constructed by MEGA 5.0 using the Neighbor-Joining method. Species: Euphorbia esula (Ee), E. fischeriana (Ef), E. peplus (Ep), Homalanthus nutans (Hn), Jatropha curcas (Jc), Ricinus communis (Rc), Triadica sebifera (Ts). (GIF 13 kb)

11295_2016_1054_MOESM6_ESM.tif (842 kb)
High resolution image (TIFF 841 kb)
11295_2016_1054_Fig10_ESM.gif (79 kb)
Fig. S7

Gas chromatography-mass spectrometry (GC-MS) analysis of germacrene D, bicyclogermacrene and beta-elemene. a Gas chromatograms showing terpenes yielded by recombinant JcTPS02 and SmMTPSL17, using FPP as substrate. Species: Jatropha curcas (Jc), Selaginella moellendorffii (Sm). b Mass spectrum of germacrene D, bicyclogermacrene, peak 1 and peak 2. c Gas chromatograms showing terpenes yielded by recombinant JcTPS56 and (±)-beta-elemene. d Mass spectrum of components from the standard (±)-beta-elemene and peak 7. (GIF 78 kb)

11295_2016_1054_MOESM7_ESM.tif (650 kb)
High resolution image (TIFF 650 kb)
11295_2016_1054_MOESM8_ESM.xlsx (10 kb)
Table S1 Primer sequences used in this study. (XLSX 10 kb)
11295_2016_1054_MOESM9_ESM.xlsx (16 kb)
Table S2 Overview of the JcTPS genes. (XLSX 16 kb)


  1. Ainsworth C (1994) Isolation of RNA from floral tissue of Rumex acetosa (Sorrel. Plant Mol Biol Rep 12:199–203CrossRefGoogle Scholar
  2. Arimura G, Huber DPW, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (−)-germacrene D synthase, PtdTPS1. Plant J 37:603–616CrossRefPubMedGoogle Scholar
  3. Aubourg S, Lecharny A, Bohlmann J (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Gen Genomics 267:730–745CrossRefGoogle Scholar
  4. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Nat Acad Sci USA 95:4126–4133CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ (2015) Investigation of terpene diversification across multiple sequenced plant genomes. Proc Nat Acad Sci USA 112:E81–E88CrossRefPubMedGoogle Scholar
  6. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229CrossRefPubMedGoogle Scholar
  8. Chen H, Li G, Köllner TG, Jia Q, Gershenzon J, Chen F (2014) Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza. BMC Plant Biol 14:1CrossRefGoogle Scholar
  9. Dhillon RS, Hooda MS, Jattan M, Chawla V, Goyal SC (2009) Development and molecular characterization of interspecific hybrids of Jatropha curcas × J. integerrima. Indian J Biotechnol 8:384–390Google Scholar
  10. Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Faldt J, Miller B, Bohlmann J (2003) E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241CrossRefPubMedPubMedCentralGoogle Scholar
  12. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971CrossRefPubMedGoogle Scholar
  13. Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26: 279–-288Google Scholar
  14. Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65: 1434–-1440Google Scholar
  15. Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175–6181CrossRefPubMedGoogle Scholar
  16. Herde M, Gartner K, Kollner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hohmann J, Molnár J (2003) Euphorbiaceae diterpenes: plant toxins or promising molecules for the therapy. Acta Pharm Hung 74:149–157Google Scholar
  18. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang CH (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Nat Acad Sci USA 104:5360–5365CrossRefPubMedPubMedCentralGoogle Scholar
  19. Irmisch S, Jiang Y, Chen F, Gershenzon J, Kollner TG (2014) Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa. BMC Plant Biol 14:270CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jiang H, Dian W, Liu F, Wu P (2003) Isolation and characterization of two fructokinase cDNA clones from rice. Phytochemistry 62:47–52CrossRefPubMedGoogle Scholar
  21. Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 7:e36522CrossRefPubMedPubMedCentralGoogle Scholar
  22. Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlman J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp. BMC Plant Biol 11:43CrossRefPubMedPubMedCentralGoogle Scholar
  23. King AJ, Brown GD, Gilday AD, Larson TR, Graham IA (2014) Production of bioactive diterpenoids in the euphorbiaceae depends on evolutionarily conserved gene clusters. Plant Cell 26:3286–3298CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge EJ, Fortman JL, Johnson HE, Anderson JV, Keasling JD (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71:1466–1473CrossRefPubMedGoogle Scholar
  25. Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Nat Acad Sci USA 97:2934–2939CrossRefPubMedPubMedCentralGoogle Scholar
  26. Le TT, Gardner J, Hoang-Le D, Schmidt CW, MacDonald KP, Lambley E, Schroder WA, Ogbourne SM, Suhrbier A (2009) Immunostimulatory cancer chemotherapy using local ingenol-3-angelate and synergy with immunotherapies. Vaccine 27:3053–3062CrossRefPubMedGoogle Scholar
  27. Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lestari D, Mulder W, Sanders J (2010) Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem Eng J 50:16–23CrossRefGoogle Scholar
  29. Li G, Kollner TG, Yin Y, Jiang Y, Chen H, Xu Y, Gershenzon J, Pichersky E, Chen F (2012) Nonseed plant Selaginella moellendorffii has both seed plant and microbial types of terpene synthases. Proc Nat Acad Sci USA 109:20774–20774Google Scholar
  30. Li C, Ng A, Xie L, Mao H, Qiu C, Srinivasan R, Yin Z, Hong Y (2016) Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. Plant Cell Rep 35:103–114CrossRefPubMedGoogle Scholar
  31. Liu X, Li L, Li W, Lu D, Chen F, Li J (2013) Quantitative determination of phorbol ester derivatives in Chinese Jatropha curcas seeds by high-performance liquid chromatography/mass spectrometry. Ind Crop Prod 47:29–32CrossRefGoogle Scholar
  32. Liu J, Huang F, Wang X, Zhang M, Zheng R, Wang J, Yu D (2014) Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene 544:83–92CrossRefPubMedGoogle Scholar
  33. Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mau CJ, West CA (1994) Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc Nat Acad Sci USA 91:8497–8501CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nakano Y, Ohtani M, Polsri W, Usami T, Sambongi K, Demura T (2012) Characterization of the casbene synthase homolog from Jatropha (Jatropha curcas L. Plant Biotechnol 29:185–189CrossRefGoogle Scholar
  36. Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34:95–106CrossRefPubMedGoogle Scholar
  37. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6CrossRefPubMedGoogle Scholar
  38. Parthiban KT, Kumar RS, Thiyagarajan P, Subbulakshmi V, Vennila S, Rao MG (2009) Hybrid progenies in Jatropha-a new development. Curr Sci 96:815–823Google Scholar
  39. Parthiban KT, Kirubashankkar R, Paramathma M, Subbulakshmi V, Thiyagarajan P, Vennila S, Sujatha M, Durairasu P (2011) Genetic association studies among growth attributes of Jatropha hybrid genetic resources. Int J Plant Breed Genet 5:159–167CrossRefGoogle Scholar
  40. Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Nat Acad Sci USA 98:13543–13548CrossRefPubMedPubMedCentralGoogle Scholar
  41. Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820CrossRefPubMedGoogle Scholar
  42. Sugai Y, Ueno Y, Hayashi K, Oogami K, Toyomasu T, Matsumoto S, Nasahiro N, Nozaki H, Kawaide H (2011) Enzymatic (13) C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii. J Biol Chem 286:42840–42847CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304CrossRefPubMedGoogle Scholar
  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vasas A, Hohmann J (2014) Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chemical Rev 114:8579–8612CrossRefGoogle Scholar
  47. Weston PA, Johnson DA, Burton HT, Snyder JC (1989) Trichome secretion composition, trichome densities, and spider mite resistance of ten accessions of Lycopersicon hirsutum. J Am Soc Hortic Sci 114:492–498Google Scholar
  48. Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW (2002) Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Nat Acad Sci USA 99:15375–15380CrossRefPubMedPubMedCentralGoogle Scholar
  49. Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37: 12213–-12220Google Scholar
  50. Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, Xu X, Huang Y, Song C, Wang Z, Shi N, Zhang X, Fang X, Yang Q, Jiang H, Chen Y, Li M, Wang Y, Chen F, Wang J, Wu G (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821CrossRefPubMedGoogle Scholar
  51. Xie X, Kirby J, Keasling JD (2012) Functional characterization of four sesquiterpene synthases from Ricinus communis (Castor bean. Phytochemistry 78:20–28CrossRefPubMedGoogle Scholar
  52. Xiong W, Xu X, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G (2013) Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L. Gene 524:124–132CrossRefPubMedGoogle Scholar
  53. Yang Y, Liu J, Li X, Liu E, Li Z, Qiu M (2013a) New terpenoids from the roots of Jatropha curcas. Chin Sci Bull 58:1–7CrossRefGoogle Scholar
  54. Yang Y, Liu J, Li Z, Li Y, Qiu M (2013b) New eudesmenoic acid methyl esters from the seed oil of Jatropha curcas. Fitoterapia 89:278–284CrossRefPubMedGoogle Scholar
  55. Zhang X, Zhang M, Su X, Huo C, Gu Y, Shi Q (2009) Chemical constituents of the plants from genus Jatropha. Chem Biodivers 6:2166–2183CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wangdan Xiong
    • 1
    • 2
  • Pingzhi Wu
    • 1
  • Yongxia Jia
    • 1
  • Xiaoyi Wei
    • 1
  • Liangxiong Xu
    • 1
  • Yanfang Yang
    • 3
  • Deyou Qiu
    • 3
  • Yaping Chen
    • 1
  • Meiru Li
    • 1
  • Huawu Jiang
    • 1
  • Guojiang Wu
    • 1
    Email author
  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Tree Genetics and Breeding, the Research Institute of ForestryChinese Academy of ForestryBeijingChina

Personalised recommendations