Skip to main content
Log in

Transcriptomic profile of leaf tissue from the leguminous tree, Millettia pinnata

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Millettia pinnata (formerly Pongamia pinnata) is a fast-growing leguminous tree indigenous to the Indian subcontinent, Southeast Asia, and Australia. This species has been introduced to subtropical and arid regions of Africa, India, the Philippines, Malaysia, Australia, and the USA for commercial growth. Exhibiting saline and drought tolerance, as well as nitrogen-fixing properties, M. pinnata has been used extensively for traditional medicine and agriculture and, more recently, for the production of a biofuel feedstock. The large size, high oil content, and fatty acid profile of the seeds are well suited for biofuel production. In this study, we characterized the leaf transcriptome that was assembled de novo from 72 seedlings pooled into eight libraries. Deep paired-end short-read sequencing was performed on individual libraries using the Illumina HiSeq 2000 platform. The Trinity-assembled transcriptome of 25,146 unique genes was annotated with a combination of open-source tools. Functional annotation was facilitated through sequence homology searches, Gene Ontology term assignment, and protein domain identification. A total of 11,873 genes were classified as full-length, and 22,603 sequences were functionally annotated. Predominate Gene Ontology biological process categories included phosphorylation, metabolic processes, and oxidation-reduction processes. Orthologous gene family analysis identified 19,640 families among the 11 sequenced plant species compared. A total of 4280 were conserved across all species, and 103 were unique to the M. pinnata leaf transcriptome. The unique M. pinnata gene families included transcripts with an array of functions including ubiquitin-like modifier proteins and BED zinc finger proteins with membership in pathways related to salt tolerance and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arote SR, Yeole PG (2010) Pongamia pinnata L: a comprehensive review. Int J PharmTech Res 2(4):2283–2290

  • Arpiwi NL, Yan G, Barbour EL, Plummer JA, Watkin E (2013) Phenotypic and genotypic characterisation of root nodule bacteria nodulating Millettia pinnata (L.) Panigrahi, a biodiesel tree. Plant Soil 367(1–2):363–377. doi:10.1007/s11104-012-1472-4

    Article  CAS  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

  • Biswas B, Kazakoff SH, Jiang Q, Samuel S, Gresshoff PM, Scott PT (2013) Genetic and genomic analysis of the tree legume Pongamia pinnata as a feedstock for biofuels. Plant Gen 6. doi: 10.3835/plantgenome2013.3805.0015

  • Chandra R, Vijay VK, Subbarao PMV, Khura TK (2012) Production of methane from anaerobic digestion of Jatropha and Pongamia oil cakes. Appl Energy 93:148–159

    Article  CAS  Google Scholar 

  • Choudhury RR, Basak S, Ramesh AM, Rangan L (2014) Nuclear DNA content of Pongamia pinnata L. and genome size stability of in vitro-regenerated plantlets. Protoplasma 251:703–709

    Article  CAS  PubMed  Google Scholar 

  • Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi MK (2002) Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol Plant Microbe Interact 15(5):411–420. doi:10.1094/MPMI.2002.15.5.411

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. doi:10.1155/2008/619832

    Article  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  • El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A et al (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136(2):3159–76. doi:10.1104/pp.104.043612

    Article  PubMed  PubMed Central  Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. (2014) Pfam: the protein families database. Nucleic Acids Res 42(database issue): D222–30. doi: 10.1093/nar/gkt1223

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–52. doi:10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Lu X, Yan H, Chen S, Zhang W, Huang R, Zheng Y (2012) Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangrove plant. DNA Res 19(2):195–207. doi:10.1093/dnares/dss004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraj J, Punja ZR (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26(9):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [computer software]. Retrieved from https://github.com/najoshi/sickle

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. doi:10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazakoff SH, Imelfort M, Edwards D, Koehorst J, Biswas B, Batley J et al (2012) Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. PLoS One 7(12):e51687. doi:10.1371/journal.pone.0051687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682

  • Parra G, Bradnam K, Ning Z, Keane T, Korf I (2009) Assessing the gene space in draft genomes. Nucleic Acids Res 37(1):289–297. doi:10.1093/nar/gkn916

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Crosby B (2005) Biological databases for plant research. Plant Physiol 138(1):1–3. doi:10.1104/pp.104.900158

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo VM, Webber CL (2012) Peanut pod, seed, and oil yield for biofuel following conventional and organic production systems. Ind Crop Prod 39:113–119

    Article  CAS  Google Scholar 

  • Sahoo DP, Aparajita S, Rout GR (2010) Inter and intra-population variability of Pongamia pinnata: a bioenergy legume tree. Plant Syst Evol 285(1–2):121–125. doi:10.1007/s00606-009-0254-9

    Article  Google Scholar 

  • Sawada T, Nakamura Y, Ohdan T, Saitoh A, Francisco PB, Suzuki E et al (2014) Diversity of reaction characteristics of glucan branching enzymes and the fine structure of α-glucan from various sources. Arch Biochem Biophys 562:9–21

  • Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenergy Res 1(1):2–11. doi:10.1007/s12155-008-9003-0

    Article  Google Scholar 

  • Sharma SS, Negi MS, Sinha P, Kumar K, Tripathi SB (2011) Assessment of genetic diversity of biodiesel species Pongamia pinnata accessions using AFLP and three endonuclease-AFLP. Plant Mol Biol Report 29(1):12–18. doi:10.1007/s11105-010-0204-2

    Article  CAS  Google Scholar 

  • Soares EV, Teixeira JA, Mota M (1994) Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can J Microbiol 40(10):851–857

    Article  CAS  PubMed  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

  • van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59(6):1383–1397. doi:10.1093/jxb/ern045

    Article  PubMed  Google Scholar 

  • Wani SP, Sreedevi TK (2008) Pongamia’s journey from forests to micro-enterprise for improving livelihoods. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Andhra Pradesh

    Google Scholar 

  • Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21(9):1859–1875. doi:10.1093/bioinformatics/bti310

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9):847–848. doi:10.1093/bioinformatics/17.9.847

    Article  CAS  PubMed  Google Scholar 

  • Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P (2011) Optimizing de novo transcriptome assembly from short-read RNA-seq data: a comparative study. BMC Bioinf 12 Suppl 14:S2. doi:10.1186/1471-2105-12-S14-S2

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the SBIR Award no. IIP-1112926 from the National Science Foundation.

Data Archiving Statement

The short-read data are available publicly through the NCBI SRA database under the accession numbers SAMN02982713, SAMN02982708, SAMN02982707, and SAMN02982706. These are leaf tissue samples, paired-end data. The BioProject is available under accession number PRJNA258017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Neale.

Additional information

Communicated by W. Ratnam

Jill L. Wegrzyn and Jeanne Whalen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 32 kb)

Table S2

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegrzyn, J.L., Whalen, J., Kinlaw, C.S. et al. Transcriptomic profile of leaf tissue from the leguminous tree, Millettia pinnata . Tree Genetics & Genomes 12, 44 (2016). https://doi.org/10.1007/s11295-016-0986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-0986-y

Keywords

Navigation