Advertisement

Tree Genetics & Genomes

, 11:114 | Cite as

An improved method for chloroplast genome sequencing in non-model forest tree species

  • Fang K. DuEmail author
  • Tiange Lang
  • Sihai Lu
  • Yuyao Wang
  • Junqing Li
  • Kangquan YinEmail author
Original Article
Part of the following topical collections:
  1. Genome Biology

Abstract

Chloroplast genomes can provide a large amount of information and resources for use in studies on plant evolution and molecular ecology. However, a rapid and efficient method for obtaining chloroplast genome sequences is still lacking. In this study, we report a modified method for the isolation of intact chloroplasts, which needs less than 0.5 g leaf material. Coupled with rolling circle amplification (RCA), next-generation sequencing, and a pipeline combining de novo assembly and reference-guided assembly (RGA), we successfully obtained a complete chloroplast genome for the non-model forest tree species, evergreen oak Quercus spinosa, with as many as 36 % of the sequence reads mapped to the chloroplast genome. The Q. spinosa cpDNA is 160,825 bp in length and codes for 134 genes (89 protein coding, 8 ribosomal RNAs (rRNAs), and 36 distinct transfer RNAs (tRNAs)). The genome organization and arrangement are similar to those found among most angiosperm chloroplast genomes. Our inexpensive and efficient protocol can be applied to the reconstruction of chloroplast genomes for plant evolutionary studies, especially in non-model tree species.

Keywords

Chloroplast Next-generation sequencing Rolling circle amplification (RCA) Oak 

Notes

Acknowledgments

The authors thank Dr. Rémy J. Petit, Dr. Antoine Kremer working in INRA Pierroton, France, Dr. Liuyang Wang working in Duke University, USA, and Dr. Saneyoshi Ueno working in Forestry and Forest Products Research Institute, Japan, for revision of, and suggestions about, the preliminary version of this paper. The authors thanks the comments and suggestions from three anonymous reviewers. The research was funded by Beijing Nova Program (grant number: Z151100000315056), National Natural Science Foundation of China (grant number 41201051; 41430749), 111 Project (grant number B13007), and Program for Changjiang Scholars, Innovative Research Team in University (grant number IRT13047) to FKD and the Major projects on control and rectification of water body pollution (2012ZX07105-002-03) to JL

Data Archiving Statement

The Q. spinosa cp genome sequence data has been deposited into GenBank and released to public under the accession number KM841421.1. The sequencing reads were submitted to SRA in NCBI under the accession number SRP061187.

Supplementary material

11295_2015_942_MOESM1_ESM.docx (133 kb)
Figure S1 Alignment of cp genome assembly results that produced by the pipeline of this study and MITObim. (DOCX 132 kb)
11295_2015_942_MOESM2_ESM.xlsx (35 kb)
Table S1 Published angiosperm cp genome sequences deposited in the NCBI database. (XLSX 35 kb)
11295_2015_942_MOESM3_ESM.xlsx (16 kb)
Table S2 Repeats identified in the Quercus spinosa cp genome. (XLSX 16 kb)

References

  1. Alexander LW, Woeste KE (2014) Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genet Genomes 10:803–12CrossRefGoogle Scholar
  2. Aslan CE, Zavaleta ES, Tershy B, Croll D (2013) Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS One 8:e66993. doi: 10.1371/journal.pone.0066993 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Atherton RA, McComish BJ, Shepherd LD, Berry LA, Albert NW, Lockhart PJ (2010) Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform. Plant Methods 6:22PubMedCentralCrossRefPubMedGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27:573PubMedCentralCrossRefPubMedGoogle Scholar
  5. Blanco L, Bernad A, Lázaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940PubMedGoogle Scholar
  6. Burger G, Lavrov DV, Forget L, Lang BF (2007) Sequencing complete mitochondrial and plastid genomes. Nat Protoc 2:603–614CrossRefPubMedGoogle Scholar
  7. Chung SM, Gordon VS, Staub JE (2007) Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome 50:215–225CrossRefPubMedGoogle Scholar
  8. Cronn R, Liston A, Parks M et al (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:122–122CrossRefGoogle Scholar
  9. Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV et al (2012) Targeted enrichment strategies for next-generation plant biology. Am J Bot 99:291–311CrossRefPubMedGoogle Scholar
  10. Dean FB, Hosono S, Fang L, Wu X, Faruqi FA, Bray-Ward P et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266PubMedCentralCrossRefPubMedGoogle Scholar
  11. Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366Google Scholar
  12. Diekmann K, Hodkinson TR, Fricke E, Barth S (2008) An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. PLoS One 3:e2813. doi: 10.1371/journal.pone.0002813 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Esteban JA, SalasM BL (1993) Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268:2719–2726PubMedGoogle Scholar
  14. Goremykin VV, Hirsch-Ernst KI, Wölfl S et al (2003a) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505CrossRefPubMedGoogle Scholar
  15. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003b) The chloroplast genome of the “basal” angiosperm Calycanthus fertilis—structural and phylogenetic analyses. Plt Syst Evol 242:119–135CrossRefGoogle Scholar
  16. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454CrossRefPubMedGoogle Scholar
  17. Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22:1813–1822CrossRefPubMedGoogle Scholar
  18. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res 41:9CrossRefGoogle Scholar
  19. Huang DI, Hefer CA, Kolosova N, Douglas CJ, Cronk QCB (2014) Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). New Phytol 204:693–703CrossRefPubMedGoogle Scholar
  20. Hutchison CA, Smith HO, Pfannkoch C, Venter JC (2005) Cell-free cloning using φ29 DNA polymerase. Proc Natl Acad Sci U S A 102:17332–17336PubMedCentralCrossRefPubMedGoogle Scholar
  21. Jansen RK, Raubeson LA, Boore JL et al (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384CrossRefPubMedGoogle Scholar
  22. Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847PubMedCentralCrossRefPubMedGoogle Scholar
  23. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kremer A, Petit RJ (1993) Gene diversity in natural populations of oak species. Ann Sci For 50:186s–203sCrossRefGoogle Scholar
  25. Kremer A, Sederoff R, Wheeler N (2010) Genomics of forest and ecosystem health in the Fagaceae: meeting report. Tree Genet Genome 6:815–820CrossRefGoogle Scholar
  26. Kremer A, Abbott AG, Carlson JE et al (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–610CrossRefGoogle Scholar
  27. Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279:16895–16898CrossRefPubMedGoogle Scholar
  28. Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15:426–427CrossRefPubMedGoogle Scholar
  29. Leseberg CH, Duvall MR (2009) The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals. J Mol Evol 69:311–318CrossRefPubMedGoogle Scholar
  30. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedCentralCrossRefPubMedGoogle Scholar
  31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079PubMedCentralCrossRefPubMedGoogle Scholar
  32. Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13:715PubMedCentralCrossRefPubMedGoogle Scholar
  33. Lu S, Hou M, Du FK, Li J, Yin K (2015) Complete chloroplast genome of the Oriental white oak: Quercus aliena Blume. Mitochondrial DNA (ahead-of-print) 1–3Google Scholar
  34. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18PubMedCentralCrossRefPubMedGoogle Scholar
  35. Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV et al (2008) Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 66:555–564CrossRefPubMedGoogle Scholar
  36. Mariac C, Scarcelli N, Pouzadou J, Barnaud A, Billot C, Faye A et al (2014) Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol Resour 14:1103–1113CrossRefPubMedGoogle Scholar
  37. Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM et al (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6:17PubMedCentralCrossRefPubMedGoogle Scholar
  38. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276PubMedCentralCrossRefPubMedGoogle Scholar
  39. Nobel PS (1974) Rapid isolation techniques for chloroplasts. Meth Enzym 31:600–606CrossRefPubMedGoogle Scholar
  40. Nock CJ, Waters DL, Edwards MA, Bowen SG, Rice N, Cordeiro GM et al (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9:328–333CrossRefPubMedGoogle Scholar
  41. Parks M, Cronn R, Liston A (2012) Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol 12:100PubMedCentralCrossRefPubMedGoogle Scholar
  42. Plomion C, Aury JM, Amselem J et al (2015) Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour. doi: 10.1111/1755-0998.12425 Google Scholar
  43. Richardson PM, Detter C, Schweitzer B et al (2003) Practical applications of rolling circle amplification of DNA templates. Genet Eng 25:51–63CrossRefGoogle Scholar
  44. Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plt Mol Biol 45:307–315CrossRefGoogle Scholar
  45. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18CrossRefPubMedGoogle Scholar
  46. Shi C, Hu N, Huang H, Gao J, Zhao YJ, Gao LZ (2012) An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS One 7:e31468. doi: 10.1371/journal.pone.0031468 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedCentralPubMedGoogle Scholar
  48. Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res 12:215–220CrossRefPubMedGoogle Scholar
  49. Straub SC, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364CrossRefPubMedGoogle Scholar
  50. Stull GW, Moore MJ, Mandala VS et al. (2013) A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Appl Plant Sci 1:apps.1200497. doi: 10.3732/apps.1200497
  51. Vieira Ldo N, Faoro H, Fraga HP, Rogalski M, de Souza EM, de Oliveira Pedrosa F et al (2014) An improved protocol for intact chloroplasts and cpDNA isolation in conifers. PLoS ONE 9:e84792. doi: 10.1371/journal.pone.0084792 CrossRefPubMedGoogle Scholar
  52. Wu Z, Raven P (1999) Flora of China. Vol. 4 (Cycadaceae through Fagaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. LouisGoogle Scholar
  53. Wu FH, Kan DP, Lee SB, Daniell H, Lee YW, Lin CC et al (2009) Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiol 29:847–856PubMedCentralCrossRefPubMedGoogle Scholar
  54. Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H et al (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68PubMedCentralCrossRefPubMedGoogle Scholar
  55. Wu J, Liu B, Cheng F, Ramchiary N, Choi SR, Lim YP, Wang XW (2012) Sequencing of chloroplast genome using whole cellular DNA and solexa sequencing technology. Front Plant Sci 3:243PubMedCentralPubMedGoogle Scholar
  56. Xu B, Li T, Luo Y, Xu R, Cai H (2014) An Empirical Algorithm for Bias Correction Based on GC Estimation for Single Cell Sequencing. Trends and Applications in Knowledge Discovery and Data Mining. Springer International Publishing: 15–21Google Scholar
  57. Zhou YH, Zhang XP, Ebright RH (1991) Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Res 19:6052PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of ForestryBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaPeople’s Republic of China
  3. 3.College of life scienceLanzhou UniversityLanzhouPeople’s Republic of China
  4. 4.State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations