Skip to main content

Advertisement

Log in

Genetic structure and internal gene flow in populations of Schinus molle (Anacardiaceae) in the Brazilian Pampa

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

One of the most important aspects for population ecology and evolution is to understand the connectivity between individuals and their groups. In this study, amplified fragment length polymorphism (AFLP) markers were employed aiming to examine genetic diversity, spatial genetic structure, and internal gene flow of nine populations of Schinus molle across the Brazilian Pampa. The dispersal capacity of S. molle in the Brazilian Pampa, the implications of the forest fragmentation to species genetic structure, and the impact of the actual genetic structure of the species to its conservation and management were investigated. AFLP markers revealed low genetic diversity and clear genetic structure among populations. Significant fine-scale spatial genetic structure at short distances was observed in all populations. Estimates of gene dispersal distance suggest that the dispersion capacity of this species is larger than the area covered by the studied populations. However, fragmentation hampers the gene flow among populations. The management of S. molle natural occurrence in this biome seems to be simple considering the species plasticity. The conservation of the species genetic resource depends on maintaining the extant forest patches and promoting their connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF (2008) Remote sensing of native and invasive species in Hawaiian forests. Remote Sens Environ 112:1912–1926

    Article  Google Scholar 

  • Baldauf C, Guillardi MC, Aguirra TJ, Correa CE, Santos FAM, Souza AP, Sebbenn AM (2014) Genetic diversity, spatial genetic structure and realized seed and pollen dispersal of Himatanthus drasticus (Apocynaceae) in the Brazilian savanna. Conserv Genet 1–11

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of populations structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni P, Pozzi C, Heun M, Terzi V, Müller KJ, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ (2005) Optimal sampling strategy for estimation of spatialgenetic structure in tree populations. Heredity 95:281–289

    Article  CAS  PubMed  Google Scholar 

  • Coart E, van Glabeke S, Petit RJ, van Bockstaele E, Rolda´n-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273

    Article  CAS  Google Scholar 

  • Dikshit A, Naqvi AA, Husain A (1986) Schinus molle: a new source of natural fungitoxicant. Appl Environ Microbiol 51:1085–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2(3):380–383

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculate (Leguminosae). Evolution 57:995–1007

    Article  PubMed  Google Scholar 

  • Goldstein DJ, Coleman RC (2004) Schinus Molle L. (Anacardiaceae) Chicha production in the Central Andes. Econ Bot 58:523–529

    Article  Google Scholar 

  • Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjær ED, Loo J, Ramamonjisoa L, Vendramin GG (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. Forest Ecol Manag. doi:10.1016/j.foreco.2014.05.002

    Google Scholar 

  • Guadagnin DL, Zalba SM, Górriz BC, Fonseca CR, Nebbia AJ, Cuevas YA, Emer C, Germain P, Wendland EMR, Perello LFC, Bastos MCS, Sanhueza CC, Bálsamo SM, Villalobos AE (2009) Árvores e arbustos exóticos invasores no Pampa: questões ecológicas, culturais e socioeconômicas de um desafio crescente. In: Pillar VP, Müller SC, Castilhos ZMS, Jacques AVA (eds) Campos Sulinos: conservação e uso sustentável da biodiversidade. MMA, Brasilia, p 403

    Google Scholar 

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier ME, Doligez A, Dutech C, Kremer A, Hallé CL, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Heuertz M, Vekemans X, Hausman J-F, Palada M, Hardy OJ (2003) Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol Ecol 12:2483–2495

    Article  CAS  PubMed  Google Scholar 

  • Heywood JS (1991) Spatial analysis of genetic variation in plant populations. Annu Rev Ecol Syst 22:335–355

    Article  Google Scholar 

  • Howard LF, Minnich RA (1989) The introduction and naturalization of Schinus molle (Pepper Tree) in Riverside, California. Landscape Urban Plan 18:77–95

    Article  Google Scholar 

  • Iponga DM (2010) Seed set of the invasive tree Schinus molle (Anacardiaceae) in semi-arid savanna, South Africa: The role of pollinators and selfing. J Arid Environ 74:414–416

    Article  Google Scholar 

  • Iponga DM, Milton SJ, Richardson DM (2009) Reproductive potential and seedling establishment of the invasive alien tree Schinus molle (Anacardiaceae) in South Africa. Aust Ecol 34:678–687

    Article  Google Scholar 

  • IUCN (2010) Guidelines for Using the IUCN Red List Categories and Criteria. Version 8.1. Prepared by the Standards and Petitions Sub–Committee in March 2010

  • Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    Article  CAS  PubMed  Google Scholar 

  • Kraus SL (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245

    Article  Google Scholar 

  • Ledig FT (2000) Founder effects and the genetic structure of Coulter pine. J Hered 91:307–315

    Article  CAS  PubMed  Google Scholar 

  • Lehmann CER, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209

    Article  PubMed  Google Scholar 

  • Lemos RPM, D’Oliveira CB, Rodrigues CR, Roesch LFW, Stefenon VM (2014) Modeling distribution of Schinus molle L. in the Brazilian Pampa: insights on vegetation dynamic and conservation of the biome. Ann For Res 57:205–214

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99.

    Article  CAS  PubMed  Google Scholar 

  • Marongiu B, Porcedda APS, Casu R, Pierucci P (2004) Chemical composition of the oil and supercritical CO2 extract of Schinus molle L. Flav Frag J 19:554–558

    Article  CAS  Google Scholar 

  • Milton SJ, Wilson JRU, Richardson DM, Seymour CL, Dean WRJ, Iponga DM, Proche S (2007) Invasive alien plants infiltrate bird-mediated shrub nucleation processes in arid savanna. J Ecol 95:648–661

    Article  Google Scholar 

  • MMA (2002) Brazilian biodiversity: assessment and identification of priority areas and measures for the conservation, sustainable use, and sharing of benefits of the biodiversity in the Brazilian biomes. Ministry of the Environment/SBF, Brasilia

    Google Scholar 

  • Noreen AME, Webb EL (2013) High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss. PLoS ONE 8(12):e82632

    Article  PubMed Central  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson DM, Iponga DM, Roura-Pascual N, Krug RM, Milton SJ, Hughes GO, Thuiller W (2010) Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography 3:1049–1061

    Article  Google Scholar 

  • Roesch LFW, Vieira FCB, Pereira VA, Schünemann AL, Teixeira IF, Senna AJT, Stefenon VM (2009) The Brazilian Pampa: a fragile biome. Diversity 2:182–198

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system (Version 2.0). State University of New York, USA

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525

    Article  CAS  PubMed  Google Scholar 

  • Stefenon VM, Gailing O, Finkeldey R (2008a) The role of gene flow in shaping genetic structures of thesubtropical conifer species Araucaria angustifolia. Plant Biol 10:356–364

    Article  CAS  PubMed  Google Scholar 

  • Stefenon VM, Behling H, Gailing O, Finkeldey R (2008b) Evidences of delayed size recovery in Araucaria angustifolia populations after post-glacial colonization of highlands in Southeastern Brazil. An Acad Bras Cienc 80:433–443

    Article  PubMed  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

  • Young WP, Schupp JM, Keim P (1999) DNA methylationand AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–790

    Article  CAS  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank CNPq (processes 471812/2011-0 and 474758/2012-5) and UNIPAMPA (PROPESQ and PROPG) by the financial support.

Data archiving statement

AFLP data are available in the TreeGenes database (http://dendrome.ucdavis.edu/treegenes/) under accession number TGDR045.

Compliance with ethical standards

All ethical standards in scientific research were followed.

Conflict of interest

Authors claim there is no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdir M. Stefenon.

Additional information

Communicated by G. G. Vendramin

Topical Collection on Population structure

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File 1

Plot diagram of the AFLP loci neutrality analysis based on the F ST values of each loci. (JPEG 1279 kb)

Supplementary File 2

PCoA plot of the S. molle populations based on the full AFLP dataset (250 loci) and on the partial dataset, excluding the outlier markers (238 loci). (JPEG 1393 kb)

Supplementary File 3

Patterns of genetic diversity estimated for the dataset excluding the outlier loci (238 bands) and for the full dataset (250 bands). (JPEG 1230 kb)

Supplementary File 4

Geographic position of each tree of S. molle within the sampled populations. Note that the distance scale is different for each population. (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, R.P.M., D’Oliveira, C.B. & Stefenon, V.M. Genetic structure and internal gene flow in populations of Schinus molle (Anacardiaceae) in the Brazilian Pampa. Tree Genetics & Genomes 11, 75 (2015). https://doi.org/10.1007/s11295-015-0885-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0885-7

Keywords

Navigation