Skip to main content
Log in

Decline in gene diversity and strong genetic drift in the northward-expanding marginal populations of Fagus crenata

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The species distribution of Fagus crenata, or Japanese beech, in the Japanese archipelago shifted northward during phytogeographical changes that occurred during the Pleistocene and Holocene epochs. Presently, the continuous natural distribution of beech reaches north to the Kuromatsunai Depression of Hokkaido Island, Japan. In addition, dozens of marginal patches and isolated individuals north of the continuous distribution have been observed. F. crenata grows remarkably well among these small-scattered northern marginal populations, which must have originated from seeds dispersed beyond the northern limit of the continuous beech forest. It is conceivable that the distribution of F. crenata is still in the process of expanding northward. We investigated the genetic structure of 33 beech populations to evaluate the population gene diversity at the leading northern edge of the range expansion. We analyzed 12 nuclear microsatellite loci in each of the 1,693 individuals. Genetic diversity parameters such as expected heterozygosity and allelic richness were clearly lower in the northernmost populations. We found genetic differentiation in the northernmost distribution range (F ST = 0.045, GST = 0.242). STRUCTURE analysis revealed that the southwestern continuous populations consisted of homogeneous ancestral clusters. However, northeastern marginal populations consisted of mixtures of highly differentiated clusters with higher levels of genetic drift than found in the continuous populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asuka Y, Tani N, Tsumura Y, Tomaru N (2004) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Notes 4:101–103

    Article  CAS  Google Scholar 

  • Barrett SCH, Husband BC (1990) The genetics of plant migration and colonization. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp 254–277

    Google Scholar 

  • Barrett SCH, Schulter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent JM, de Beaulieu JL, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282

    Article  Google Scholar 

  • Comps B, Gömöry D, Letouzey J, Thiebaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cwynar LC, MacDonald GM (1987) Geographical variation of lodgepole pine in relation to population history. Am Nat 129:463–469

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii N, Tomaru N, Okuyama K, Koike T, Mikami T, Ueda K (2002) Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Syst Evol 232:21–33

    Article  CAS  Google Scholar 

  • Furuhata Y (1932) Hondou shokubutsu bunpu jou ni okeru youteisan wo chushin to suru anzangan gun ni tsuite [Andesite around Mt. Yotei with regard to the plant distributions in Hokkaido]. Hokkaido Ringyo Kaihou J Forestry Hokkaido 358:17–20 (in Japanese)

    Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3.2. University of Lausanne, Lausanne, Switzerland

  • Hagiwara S (1988) The diameter growth rate of Japanese beech Fagus crenata Blume, in their northern limit, Hokkaido beech forest, Japan (in Japanese with English summary). Mem Natl Sci Mus 21:99–106

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hara M (1996) Bunarin no shizenshi [Natural history of beech forests]. Heibonsha, Tokyo (in Japanese)

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka K, Tomaru N (2009) Genetic divergence in nuclear genomes between populations of Fagus crenata along the Japan Sea and Pacific sides of Japan. J Plant Res 122:269–282

    Article  CAS  PubMed  Google Scholar 

  • Honda S (1900a) Nippon shinrin shokubutsutai ron [A theory of forest zonation in Japan]. Dai-Nippon Sanrin Kaihou J Forestry Sanrin 205:4–35 (in Japanese)

    Google Scholar 

  • Honda S (1900b) Nippon shinrin shokubutsutai ron (zoku) [A theory of forest zonation in Japan (cont.)]. Dai-Nippon Sanrin Kaihou J Forestry Sanrin 206:7–39 (in Japanese)

    Google Scholar 

  • Honda S (1900c) Nippon shinrin shokubutsutai ron (zoku) [A theory of forest zonation in Japan (cont.)]. Dai-Nippon Sanrin Kaihou J Forestry Sanrin 207:1–25 (in Japanese)

    Google Scholar 

  • Hubisz M, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Husband BC, Barrett SCH (1992) Effective population size and genetic drift in tristylous Eichhornia paniculata (Pontederiaceae). Evolution 46:1875–1890

    Article  Google Scholar 

  • Igarashi Y (1994) Hokujo suru buna [Northward expansion of Fagus crenata]. Tree Breed Hokkaido 37:1–7 (in Japanese)

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kaji M, Takahashi Y (1999) Todai Hokkaido enshurin ni okeru buna sanchibetsu fenoroji 1998 nen no kaiyoki to bansogai [Phenology of Fagus crenata between different provenances at the Tokyo Univ. Forest in Hokkaido – Budding period and late frost damage in 1998]. Trans Meet Hokkaido Br Jpn For Soc 47:54–57 (in Japanese)

    Google Scholar 

  • Kawano S, Kitamura K (1997) Demographic genetics of the Japanese beech, Fagus crenata, in the Ogawa Forest Preserve, lbaraki, Central Honshu, Japan. III. Population dynamics and genetic substructuring within a metapopulation. Plant Species Biol 12:157–177

    Article  Google Scholar 

  • Kira T (1977) A climatological interpretation of Japanese vegetation zones. In: Miyawaki A, Tüxen R (eds) Vegetation science and environmental protection. Maruzen, Tokyo, pp 21–30

    Google Scholar 

  • Kitabatake T, Wada N (2001) Notes on Beech (Fagus crenata Blume) seed and seedling mortality due to rodent herbivory in a northernmost beech forest, Utasai, Hokkaido. J For Res 6:111–115

    Article  Google Scholar 

  • Kitamura K, Kawano S (2001) Regional differentiation in genetic components for the American beech, Fagus grandifolia Ehrh., in relation to geological history and mode of reproduction. J Plant Res 114:353–368

    Article  CAS  Google Scholar 

  • Kitamura K, Kobayashi M, Kawahara T (2007) Age structure of wind-felled canopy trees for Siebold’s beech (Fagus crenata) in the northernmost population in Karibayama, Hokkaido. J For Res 12:467–472

    Article  Google Scholar 

  • Kito N (2003) Hokugen no buna: sono chishiteki haikei [The northern-most distribution of Fagus crenata and its geohistorical implications]. Shinrin Kagaku 37:46–50 (in Japanese)

    Google Scholar 

  • Kito N, Ohkuro Y (2012) Vegetation response to climatic oscillations during the last glacial-interglacial transition in northern Japan. Quat Int 254:118–128

    Article  Google Scholar 

  • Kobayashi M (2009) Population processes of dominant tree species Siebold’s beech (Fagus crenata Blume) at its northern distribution front. Dissertation, Hokkaido University

  • Kobayashi M, Watanabe S (2003) Stand structure of the northern bound population of Fagus crenata, located at Tsubamenosawa, Hokkaido, Japan. Bull Geol Environ Sci 5:1–23 (in Japanese with English summary)

    Google Scholar 

  • Kobayashi M, Kitamura K, Kawahara T (2009) Microsatellite polymorphism of Siebold’s beech (Fagus crenata Blume) at five National Forest Reserves in the Oshima Peninsula, southern Hokkaido. Bull FFPRI 411:143–148

    Google Scholar 

  • Kobayashi M, Kitamura K, Matsui T, Kawano S (2013) Genetic characteristics reflecting the population size and disturbance regime of Siebold's beech (Fagus crenata Blume) populations at the northernmost distribution. Silvae Genet 62:1–7

    Google Scholar 

  • Koike T, Kato S, Shimamoto Y, Kitamura K, Kawano S, Ueda K, Mikami T (1998) Mitochondrial DNA variation follows a geographic pattern in Japanese beech species. Bot Acta 3:87–92

    Article  Google Scholar 

  • Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196:19–30

    Article  Google Scholar 

  • Langella O (2007) Populations 1.2.30: population genetic software (individuals or populations distances, phylogenetic trees). France. Available at http://bioinformatics.org/~tryphon/populations/. Accessed 14 Sept 2012

  • Liepelt S, Cheddadi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.)-A synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol 153:139–149

    Article  Google Scholar 

  • Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463

    Article  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WI, Petit RJ, de Beaulieu JL (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Yagihashi T, Nakaya T, Taoda H, Yoshinaga S, Daimaru H, Tanaka N (2004) Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. J Veg Sci 15:605–614

    Google Scholar 

  • McLachlan JS, Clark JS (2004) Reconstructing historical ranges with fossil data at continental scales. For Ecol Manag 197:39–147

    Article  Google Scholar 

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Article  Google Scholar 

  • Miguchi H (1996) Dynamics of beech forest from the view point of rodent ecology - Ecological interactions of the regeneration characteristics of Fagus crenata and rodents. Jpn J Ecol 46:185–189 (in Japanese with English summary)

    Google Scholar 

  • Miller MP (2005) Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A (1967) Nihon no shokusei [Vegetation of Japan]. Gakken, Tokyo (in Japanese)

    Google Scholar 

  • Mizunaga H, Sako S, Nakao Y, Shimono Y (2005) Factors affecting the dynamics of the population of Fagus crenata in the Takakuma Mountains, the southern limit of its distribution area. J For Res 10:481–486

    Article  Google Scholar 

  • Mousadik EA, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Namikawa K, Matsui T, Kobayashi M, Goto R, Kuramoto S (2010) Initial establishment and regeneration processes of an outlying isolated Fagus crenata Blume forest stand in the northernmost boundary of its range in Hokkaido, northern Japan. Plant Ecol 207:161–174

    Article  Google Scholar 

  • Nanbu K (1927) Rinboku no suichokubunpu ni kansuru nisan no shiryo [Data on the altitudinal distribution of trees]. Hokkaido Ringyo Kaihou 292:232–239 (in Japanese)

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Ohmori H, Yanagimachi O (1988) Thermal conditions both of the upper and lower limits of the Fagus crenata forest zone, and changes in summer temperature from the latest Pleistocene to the middle Holocene in Japan. Q Res 27:81–100 (in Japanese with English summary)

    Article  Google Scholar 

  • Ohwi J (1965) Nihon shokubutsushi [Flora of Japan], 2nd edn. Shibundo, Tokyo (in Japanese)

    Google Scholar 

  • Okaura T, Harada K (2002) Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenata Blume). Heredity 88:322–329

    Article  CAS  PubMed  Google Scholar 

  • Pastorelli R, Smulders MJM, Van’t Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2005) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peters R (1997) Beech Forests. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag 156:49–74

    Article  Google Scholar 

  • Petit RJ, Garnier-Géré P, Hampe A (2004) Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. For Ecol Manag 197:117–137

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) STRUCTURE, version 2.3.3. Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi Y (1989) Some pollen records from Hokkaido and Sakhalin. Bull Dep Geogr Univ Tokyo 21:1–17

    Google Scholar 

  • Sasaki Y (1970) Versuch zur systematischen und geographischen Gliederung der Japanischen Buchenwaldgesellschaften. Vegetatio 20:214–249 (in German with English summary)

    Article  Google Scholar 

  • Suzuki T (1966) Preliminary system of the Japanese natural communities. Jpn J For Environ 8:1–12 (in Japanese with English summary)

    Google Scholar 

  • Suzuki W, Osumi K, Masaki T (2005) Mast seeding and its spatial scale in Fagus crenata in northern Japan. For Ecol Manag 205:105–116

    Article  Google Scholar 

  • Takahashi M, Tsumura Y, Nakamura T, Uchida K, Ohba K (1994) Allozyme variation of Fagus crenata in northeastern Japan. Can J For Res 24:1071–1074

    Article  Google Scholar 

  • Takahashi M, Tomaru N, Ubukata M, Koono K (2002) Genetic structure in the northernmost marginal population of Japanese beech (Fagus crenata Blume): Influence of the founding event on genetic structure. Silvae Genet 51:219–225

    Google Scholar 

  • Tanaka J (1900) Hokkaido shokubutsutai ni tsuite [On plant zonation in Hokkaido]. Sanrin 209:11–22 (in Japanese)

    Google Scholar 

  • Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F. japonica. Theor Appl Genet 99:11–15

    Article  CAS  Google Scholar 

  • Tatewaki M (1948) Buna no hokugenkai [Northern limit of Fagus crenata]. Ecol Rev 11:46–51 (in Japanese)

    Google Scholar 

  • Terazawa K, Yanai S, Yasaka M (1995) Characteristics of seed production of Fagus crenata (I). Quantity and quality of fallen nuts in natural stands in southwestern Hokkaido from 1990 to 1993. J Jpn For Soc 77:137–144 (in Japanese with English summary)

    Google Scholar 

  • Tomaru N, Mitsutsuji T, Takahashi M, Tsumura Y, Uchida K, Ohba K (1997) Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity 78:241–251

    Article  Google Scholar 

  • Tomaru N, Takahashi M, Tsumura Y, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M (1982a) Late-Quaternary shift of Fagus distribution. Bot Mag Tokyo 95:203–217

    Article  Google Scholar 

  • Tsukada M (1982b) Late-Quaternary development of the Fagus forest in the Japanese archipelago. Jpn J Ecol 21:113–118

    Google Scholar 

  • Watanabe S (1987) Hokugen no bunarin [Beech forest in the northern range limit, society of forest improvement and diffusion in Hokkaido]. Hokkaido Ringyo Kairyo Fukyu Kyoukai, Sapporo (in Japanese)

    Google Scholar 

  • Watanabe S (1988) Buna hokugenkai kosei shuyojushu no kukanbunpu [Vertical distribution patterns of the dominant trees on the Fagus crenata forests in the district of its northern limit, Hokkaido, Japan]. Mem Natl Sci Mus 21:87–98 (in Japanese)

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc Sixth Int Congr Genet 1:356–366

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yagihashi T, Matsui T, Nakaya T, Taoda H, Tanaka N (2003) Classification of Fagus crenata forests and Quercus mongolica var. grosseserrata forests with regard to climatic conditions. Jpn J Ecol 53:85–94 (in Japanese with English summary)

    Google Scholar 

  • Yagihashi T, Matsui T, Nakaya T, Tanaka N, Taoda H (2007) Climatic determinants of the northern range limit of Fagus crenata forests in Japan. Plant Species Biol 22:217–225

    Article  Google Scholar 

  • Yasuda Y, Miyoshi N (1998) Nihonretto shokuseishi [Vegetation history of Japanese archipelago]. Asakura Publishing Co. Ltd., Tokyo (in Japanese)

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank T. Kawahara, T. Nagamitsu, M. Takahashi, and S. Goto for technical advice and discussion. Thanks are also due to T. Suzuki, K. Terazawa, M. Haruki, N. Kito, K. Uchida, Y. Honma, S. Sasaki, K. Yamanoi, Y. Sakamoto, and A. Takazawa for their assistance in the field and laboratory. We would also like to thank the alpine guides from Mountain Guide Coyote, Northland, Niseko Nature Guide Forestrek, and Alpine Guide Nomad, who provided field assistance.

Conflicts of interest

This study was supported by Grants-in-Aid for Scientific Research (21580189, 23370006) from the Japan Society for the Promotion of Science, a Grant for Environmental Research Projects from the Sumitomo Foundation (083216), a Grant for Natural Science Research from the Kuromatsunai Municipality (No. 14, 2010), and Global Environmental Research of Japan (S-8) from the Ministry of the Environment. The authors declare that they have no conflict of interest.

Ethical standards

This study complied with all current relevant Japanese law.

Data archiving statement

Genotyping data has been deposited in the TreeGenes Database under accession number TGDR032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Kitamura.

Additional information

Communicated by Y. Tsumura

This article is part of the Topical Collection on Population structure

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 44 kb)

Supplementary Table 1

(PDF 31 kb)

Supplementary Table 2

(PDF 31 kb)

Supplementary Table 3

(PDF 37 kb)

Supplementary Table 4

(PDF 42.2 kb)

Supplementary Table 5

(PDF 30.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, K., Matsui, T., Kobayashi, M. et al. Decline in gene diversity and strong genetic drift in the northward-expanding marginal populations of Fagus crenata . Tree Genetics & Genomes 11, 36 (2015). https://doi.org/10.1007/s11295-015-0857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0857-y

Keywords

Navigation