Skip to main content
Log in

Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Transposition of mobile elements has been implicated in genome instability, rearrangements and therefore also adaptation to changing environmental conditions. Transposons could influence gene activity directly by transposition inside or close to coding regions by their disruption or by addition of regulative sequences. Further, class I transposable elements, which are the most abundant in plant genomes, utilize a RNA intermediate in their life cycle, therefore retrotransposons could act by producing non-coding RNAs that could affect other transcripts by RNA interference. Transposition activity is suppressed by chromatin modifications, and both classes of transposons have been shown to be activated in plants under various stress conditions and developmental stages. Using a nonspecific amplification approach, we demonstrate the differential transcriptional activation of sequences with homology to transposable elements and other associated sequences in the complex genome of Scots pine (Pinus sylvestris L.) after exposure to heat stress, infestation with pine woolly aphids, and salicylic acid and abscisic acid treatment. Sequences with homology to several retrotransposon classes and families were identified, as well as several chimeric transcript types. Some of them represent chloroplast sequence insertions into the pine nuclear genome and these sequences are highly represented in EST databases of a wide range of species. In this study, we identified several retrotransposon classes and families with differing levels of similarity with known transposable elements from other plant species, and which are differentially expressed under various stress conditions in Scots pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altinkut A, Raskina O, Nevo E, Belyayev A (2006) En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution. Cell Mol Biol Lett 11(2):214–230

    Article  CAS  PubMed  Google Scholar 

  • Barnes JR, Lorenz WW, Dean JFD (2008) Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.). Gene 413:18–31

    Article  CAS  PubMed  Google Scholar 

  • Beguiristain T, Grandbastien MA, Puigdomènech P, Casacuberta JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127:212–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capy P, Gasperi G, Biemont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106

    Article  CAS  PubMed  Google Scholar 

  • Chopra S, Brendel V, Zhang J, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci U S A 96:15330–15335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen CJ, Lock WM, Marger DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114

    Article  CAS  PubMed  Google Scholar 

  • Cossu RM, Buti M, Giordani T, Natali L, Cavallini A (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet Genomes 8(1):61–75

    Article  Google Scholar 

  • Domingues DS, Cruz GMQ, Metcalfe CJ, Nogueira FTS, Vicentini R, Alves C, Sluys M (2012) Analysis of plant LTR-retrotransposons at the fine scale family level reveals individual molecular patterns. BMC Genomics. doi:10.1186/1471-2164-13-137

    PubMed Central  PubMed  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Echenique V, Stamova B, Wolters P, Lazo G, Carollo VL, Dubcovsky J (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

    Article  CAS  PubMed  Google Scholar 

  • Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134:221–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng G, Leem Y, Levin HL (2012) Transposon integration enhances expression of stress response genes. Nucleic Acids Res. doi:10.1093/nar/gks1185

    Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18(7):1176–1188

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien M-A, Lucas H, Morel JB, Corinne MC, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100:241–252

    Article  CAS  PubMed  Google Scholar 

  • Grönberg H, Hietala AM, Haahtela K (2009) Analysing scots pine defence-related transcripts and fungal DNA levels in seedlings single- or dual-inoculated with endophytic and pathogenic Rhizoctonia species. For Pathol 39:377–389

    Article  Google Scholar 

  • Guo X, Ruan S, Hu W, Cai D, Fan L (2008) Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct Integr Genomics. doi:10.1007/s10142-007-0067-2

    PubMed  Google Scholar 

  • Hashida S, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132(3):1207–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol. doi:10.1186/gb-2004-5-6-225

    PubMed Central  PubMed  Google Scholar 

  • He P, Ma Y, Zhao G, Dai H, Li H, Chang L, Zhang Z (2010) FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. J Plant Res 123(5):707–714

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12(6):2521–2528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–118

    Article  CAS  PubMed  Google Scholar 

  • Jurka J (2005) OSHOOTER: EnSpm-type DNA transposon from rice. Repbase Reports 5(8):205

    Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A 97(12):6603–6607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalendar R, Tanskanen JA, Chang W, Antonius K, Sela H, Peleg P, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A 105:5833–5838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet. doi:10.1007/s00122-010-1398-2

    PubMed  Google Scholar 

  • Kamm A, Doudric RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci U S A 93:2708–2713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S (2001) OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol 42(12):1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97(16):8849–8855

    Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinforma. doi:10.1186/1471-2105-7-474

    Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra C, Hartigan J, Yandell M, Langley CH, Korf I, Neal DB (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics. doi:10.1186/1471-2164-11-420

    PubMed Central  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van AS, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel A, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, LaTorre A, Moya A (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. doi:10.1093/nar/gkq1061

    PubMed Central  PubMed  Google Scholar 

  • Magbanua ZV, Ozkan S, Bartlett BD, Chouvarine P, Saski CA, Liston A, Cronn RC, Nelson CD, Peterson DG (2011) Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of loblolly pine. PLoS One. doi:10.1371/journal.pone.0016214

    Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2(5):643–654

    Article  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:17–29

    Article  Google Scholar 

  • McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash 53:254–261

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien M (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J 28(2):159–168

    Article  CAS  PubMed  Google Scholar 

  • Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS One. doi:10.1371/journal.pone.0004332

    Google Scholar 

  • Mourier T, Willerslev E (2009) Retrotransposons and non-protein coding RNAs. Brief Funct Genom Proteomic 8(6):493–501

    Article  CAS  Google Scholar 

  • Murray BG (1998) Nuclear DNA amounts in gymnosperms. Ann Bot 82:3–15

    Article  CAS  Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Pozárková D, Macas J (2003) Highly abundant pea LTR Retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53(3):399–410

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. doi:10.1038/nature12211

    PubMed  Google Scholar 

  • Peterson PA (1953) A mutable pale green locus in maize. Genetics 38:682–683

    Google Scholar 

  • Piriyapongsa J, Marino-Ramırez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plomion C, Chagné D, Pot D, Kumar S, Wilcox PL, Burdon RD, Prat D, Peterson DG, Paiva J, Chaumeil P, Vendramin GG, Sebastiani F, Nelson CD, Echt CS, Savolainen O, Kubisiak TL, Cervera MT, de María N, Islam-Faridi MN (2007) Pines. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants. Forest Trees, vol 7. Springer, New York, pp 29–92

  • Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46:21–42

    Article  CAS  PubMed  Google Scholar 

  • Rocheta M, Carvalho L, Viegas W, Morais-Cecílio L (2012) Corky, a gypsy-like retrotransposon is differentially transcribed in Quercus suber tissues. BMC Res Notes. doi:10.1186/1756-0500-5-432

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Stuart-Rogers C, Flavell AJ (2001) The evolution of Ty1-copia group retrotransposons in gymnosperms. Mol Biol Evol 18(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A 98:5099–5103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18(4):383–393

    Article  CAS  PubMed  Google Scholar 

  • Tapia G, Verdugo I, Yaňez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzalez E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda M, Tsutsumi N, Kadowaki K (2005) Translocation of a 190-kb mitochondrial fragment into rice chromosome 12 followed by the integration of four retrotransposons. Int J Biol Sci 1(3):110–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vernhettes S, Grandbastien M-A, Casacuberta JM (1998) The evolutionary analysis of the Tnt1 Retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Mol Biol Evol 15:827–836

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics. doi:10.1186/1471-2164-11-601

    PubMed Central  PubMed  Google Scholar 

  • Vicient CM, Jaaskelainen J, Kalendar R, Schylman A (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Voronova A, Jansons A, Ruņģis D (2011) Expression of retrotransposon-like sequences in Scots pine (Pinus sylvestris L) in response to heat stress. Environ Exp Biol 9:121–127

    Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci U S A 89:7124–7128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vukich M, Giordani T, Natali L, Cavallini A (2009) Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biol. doi:10.1186/1471-2229-9-150

    PubMed Central  PubMed  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6(8):959–961

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17(7):1072–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Guyot R, Yahiaoui N, Keller B (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies W (2002) ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Witte C, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A 98(24):13778–13783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav CB, Singh HN (2013) In-silico identification of LTR type retrotransposons and their transcriptional activities in Solanum Tuberosum. IJSCE 3(1):160–164

    Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. doi:10.1186/1471-2105-13-134

    Google Scholar 

  • Zhang R, Zhang L, Yu W (2012) Genome-wide expression of non-coding RNA and global chromatin modification. Acta Biochim Biophys Sin 44(1):40–47

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Social Fund grant 2009/0200/1DP/1.1.1.2.0/09/APIA/VIAA/146.

Data Archiving Statement

The 126 sequences reported in this manuscript have been submitted to the NCBI Genbank EST database (accession numbers JZ389987-JZ390112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Voronova.

Additional information

Communicated by J. L. Wegrzyn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, A., Belevich, V., Jansons, A. et al. Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genetics & Genomes 10, 937–951 (2014). https://doi.org/10.1007/s11295-014-0733-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0733-1

Keywords

Navigation