Skip to main content
Log in

Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico?

  • Special Feature
  • Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology
  • Published:
Ecological Research

Abstract

In Mexico, ultramafic complexes are present in different regions from the northwest (Baja California Norte) to the southeast (Chiapas). In this paper, we present the results of the exploration of three ultramafic (serpentine) habitats in central and southern Mexico: Cuicatlán–Concepción Pápalo (Oaxaca), Tehuitzingo–Tecomatlán (Puebla), and San Juan de Otates (Guanajuato). Previous geology studies showed that these complexes are mainly made up of serpentinized peridotites. Soil analyses demonstrated typical ultramafic characteristics such as high content of Mg in relation to Ca, and high concentrations of Fe, Cr, Co, and Ni. Soil samples from Oaxaca and Puebla had similar Ni contents around 2300 mg kg−1, while samples of Guanajuato showed the lowest Ni levels with an average of 200 mg kg−1 as well as for other metals such as Co, Cr, Mn, and Zn. During this study, 83 plant specimens were collected, of which 52 were identified at genus level and 40 at species level. The collected plants belong to 19 different families such as Anacardiaceae, Fabaceae, Acanthaceae, Asteraceae, Sterculiaceae, and Verbenaceae which are also widely present in other ultramafic areas in Iran, Brazil, Sri Lanka, and Costa Rica. Only two Mexican endemic species are included in the collection. Ni hyperaccumulators were not detected at any of the studied sites. Therefore, hyperaccumulation, as a tolerance mechanism of the flora in response to ultramafic geochemical stress, does not seem to be developed in Central Mexico, as observed in the close Costa Rican site of Santa Elena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(modified of Ortiz-Hernández et al. 2006)

Similar content being viewed by others

References

  • Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101:219–224

    Article  PubMed  Google Scholar 

  • Baker AJM, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barazani O, Sathiyamoorthy P, Manandhar U, Vulkan R, Golan-Goldhirsh A (2004) Heavy metal accumulation by Nicotiana glauca Graham in a solid waste disposal site. Chemosphere 54:867–872

    Article  PubMed  CAS  Google Scholar 

  • Barreto L, Casale I (2002) Caracterización de las plantas asociadas a los suelos serpentiniticos de Loma de Hierro, Venezuela. Octavo Congreso Latinoamericano de Botánica, Cartagena de Indias, Colombia. Libro de resúmenes: 357

  • Boyd RS, Jaffré T (2009) Elemental concentrations of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. Northeast Nat 16:93–110

    Article  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland

    Google Scholar 

  • Buendía-Gonzalez L, Orozco-Villafuerte J, Estrada-Zuñiga ME, Barrera-Diaz CE, Vernon-Carter EJ, Cruz-Sosa F (2010) In vitro lead and nickel accumulation in mesquite (Prosopis laevigata) seedlings. Rev Mex Ing Quím 9:1–9

    Google Scholar 

  • Campbell LR, Stone CO, Shamsedin NM, Kolterman DA, Pollard AJ (2013) Facultative Hyperaccumulation of Nickel in Psychotria grandis (Rubiaceae). Caribb Nat 1:1–8

    Article  Google Scholar 

  • Carballido-Sánchez EA, Delgado-Argote LA (1989) Geología del cuerpo serpentinítico de Tehuitzingo, Estado de Puebla. Interpretación preliminar de su emplazamiento. Rev Mex Cienc Geol 8:134–148

    Google Scholar 

  • Chaney RL, Chen KJ, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140

    Article  CAS  Google Scholar 

  • Conabio (1998) La diversidad biológica de México: Estudio de País. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  • Delgado-Argote LA (1988) Geología preliminar de la secuencia volcanosedimentaria y serpentinitas asociadas del Jurásico (?) del área de Cuicatlán–Concepción Pápalo, Oaxaca. Rev Inst Geol Univ Nac Auton Mex 7:127–135

    Google Scholar 

  • Delgado-Argote LA, López MM, York D, Hall CM (1992) Geologic framework and geochronology of ultramafic complexes of southern Mexico. Can J Earth Sci 29:1590–1604

    Article  CAS  Google Scholar 

  • Echevarria G, Massoura ST, Sterckeman T, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25(3):643–651

    Article  PubMed  CAS  Google Scholar 

  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:1

    Article  Google Scholar 

  • Gharderian SM, Baker AJM (2007) Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. J Geochem Explor 92:34–42

    Article  CAS  Google Scholar 

  • Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77:185–194

    Article  Google Scholar 

  • Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9:95–98. https://doi.org/10.2113/gselements.9.2.95

    Article  CAS  Google Scholar 

  • Hernández G, Solorio G, Vasallo L, Flores L, Maples M, Hernández D, Alcalá R (2000) Dispersión de Ni y Cr en sedimentos y suelos superficiales derivados de piroxenitas; serpentinitas y basaltos de la cuenca de San Juan de Otates Estado de Guanajuato, Mexico. Rev Mex Cienc Geol 17:127–136

    Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev Camb Philos Soc 83:495–508

    PubMed  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Maldonado-Magaña A, Favela-Torres E, Rivera-Cabrera F, Volke-Sepulveda TL (2011) Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil 339:377–389

    Article  CAS  Google Scholar 

  • Ortiz-Hernández LE, Escamilla-Casas JC, Flores-Castro K, Ramírez-Cardona M, Acevedo-Sandoval O (2006) Características geológicas y potencial metalogenético de los principales complejos ultramáficos-máficos de México. Bol Soc Geol Mex 58:161–181

    Google Scholar 

  • Paulo-Pereira M, de Almeida-Rodriguez LC, Fogaroli-Correa F, Mauro-de-Castro E, Erlo-Ribeiro V, Jose-Pereira F (2015) Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees 30:807–814

    Article  CAS  Google Scholar 

  • Rajakaruna N, Bohm BA (2002) Ultramafic and its vegetation: a preliminary study from Sri Lanka. J Appl Bot 76:20–28

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Romero R (2007a) The ultramafic flora of the Santa Elena peninsula, Costa Rica: a biogeochemical reconnaissance. J Geochem Explor 93:153–159

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Thierry B, Echevarria G, Miranda ZJG (2007b) The flora and biogeochemistry of the ultramafic soils of Goias state, Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Ruiz-Olivares A, González-Chávez MCA, Carrillo-González R, Reyes-Ramos M, Suarez Espinosa J (2016) Dendrorremediación de Suelos Severamente Contaminados con Residuos del Reciclaje de Baterías Ácidas de Plomo. Agroproductividad 9:68–69

    Google Scholar 

  • Sarukhán J, Koleff P, Carabias J, Soberon J, Dirzo R, Llorente-Bousquets J, Halffter G, Gonzalez R, March I, Mohar A, Anta S, de la Maza J (2009) Capital natural de México. Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

  • Sinhal VK, Srivastava A, Singh VP (2010) EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol 31:255–259

    PubMed  CAS  Google Scholar 

  • Solís L (2006) Etnoecología cuicateca en San Lorenzo Pápalo, Oaxaca. M.Sc. Thesis. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico

  • van der Ent A, Reeves RD, Baker AJM, Pollard J, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Prybylowicz J, Prybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861. https://doi.org/10.1038/srep4186

    Article  PubMed  PubMed Central  Google Scholar 

  • Villaseñor JL (2004) Los géneros de plantas vasculares de la flora de México. Bol Soc Bot Mex 75:105–135

    Google Scholar 

  • Whittaker RH (1954) The ecology of serpentine soils. Ecology 35:258–288

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the technicians of MEXU herbarium for their valuable service in plant identification, to Lucy Mora, and Javier Toledo at UNAM University for their timely support to conclude the chemical analysis of all the samples collected during the research. And also, the authors convey their sincere gratitude to the National Council of Science and Technology (CONACYT) in Mexico and to the French National Research Agency, reference ANR-10-LABX-21 - LABEX RESSOURCES21 for their monetary and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Montserrat Navarrete Gutiérrez.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete Gutiérrez, D.M., Pons, MN., Cuevas Sánchez, J.A. et al. Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico?. Ecol Res 33, 641–649 (2018). https://doi.org/10.1007/s11284-018-1574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-018-1574-4

Keywords

Navigation