Advertisement

Ecological Research

, Volume 33, Issue 3, pp 641–649 | Cite as

Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico?

  • Dulce Montserrat Navarrete Gutiérrez
  • Marie-Noëlle Pons
  • Jesús Axayacatl Cuevas Sánchez
  • Guillaume Echevarria
Special Feature Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology

Abstract

In Mexico, ultramafic complexes are present in different regions from the northwest (Baja California Norte) to the southeast (Chiapas). In this paper, we present the results of the exploration of three ultramafic (serpentine) habitats in central and southern Mexico: Cuicatlán–Concepción Pápalo (Oaxaca), Tehuitzingo–Tecomatlán (Puebla), and San Juan de Otates (Guanajuato). Previous geology studies showed that these complexes are mainly made up of serpentinized peridotites. Soil analyses demonstrated typical ultramafic characteristics such as high content of Mg in relation to Ca, and high concentrations of Fe, Cr, Co, and Ni. Soil samples from Oaxaca and Puebla had similar Ni contents around 2300 mg kg−1, while samples of Guanajuato showed the lowest Ni levels with an average of 200 mg kg−1 as well as for other metals such as Co, Cr, Mn, and Zn. During this study, 83 plant specimens were collected, of which 52 were identified at genus level and 40 at species level. The collected plants belong to 19 different families such as Anacardiaceae, Fabaceae, Acanthaceae, Asteraceae, Sterculiaceae, and Verbenaceae which are also widely present in other ultramafic areas in Iran, Brazil, Sri Lanka, and Costa Rica. Only two Mexican endemic species are included in the collection. Ni hyperaccumulators were not detected at any of the studied sites. Therefore, hyperaccumulation, as a tolerance mechanism of the flora in response to ultramafic geochemical stress, does not seem to be developed in Central Mexico, as observed in the close Costa Rican site of Santa Elena.

Keywords

Ultramafic flora Serpentine Nickel Hyperaccumulator Geochemical anomaly 

Notes

Acknowledgements

The authors are grateful to all the technicians of MEXU herbarium for their valuable service in plant identification, to Lucy Mora, and Javier Toledo at UNAM University for their timely support to conclude the chemical analysis of all the samples collected during the research. And also, the authors convey their sincere gratitude to the National Council of Science and Technology (CONACYT) in Mexico and to the French National Research Agency, reference ANR-10-LABX-21 - LABEX RESSOURCES21 for their monetary and technical support.

References

  1. Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101:219–224CrossRefPubMedGoogle Scholar
  2. Baker AJM, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  3. Barazani O, Sathiyamoorthy P, Manandhar U, Vulkan R, Golan-Goldhirsh A (2004) Heavy metal accumulation by Nicotiana glauca Graham in a solid waste disposal site. Chemosphere 54:867–872CrossRefPubMedGoogle Scholar
  4. Barreto L, Casale I (2002) Caracterización de las plantas asociadas a los suelos serpentiniticos de Loma de Hierro, Venezuela. Octavo Congreso Latinoamericano de Botánica, Cartagena de Indias, Colombia. Libro de resúmenes: 357Google Scholar
  5. Boyd RS, Jaffré T (2009) Elemental concentrations of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. Northeast Nat 16:93–110CrossRefGoogle Scholar
  6. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  7. Buendía-Gonzalez L, Orozco-Villafuerte J, Estrada-Zuñiga ME, Barrera-Diaz CE, Vernon-Carter EJ, Cruz-Sosa F (2010) In vitro lead and nickel accumulation in mesquite (Prosopis laevigata) seedlings. Rev Mex Ing Quím 9:1–9Google Scholar
  8. Campbell LR, Stone CO, Shamsedin NM, Kolterman DA, Pollard AJ (2013) Facultative Hyperaccumulation of Nickel in Psychotria grandis (Rubiaceae). Caribb Nat 1:1–8Google Scholar
  9. Carballido-Sánchez EA, Delgado-Argote LA (1989) Geología del cuerpo serpentinítico de Tehuitzingo, Estado de Puebla. Interpretación preliminar de su emplazamiento. Rev Mex Cienc Geol 8:134–148Google Scholar
  10. Chaney RL, Chen KJ, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140CrossRefGoogle Scholar
  11. Conabio (1998) La diversidad biológica de México: Estudio de País. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, MéxicoGoogle Scholar
  12. Delgado-Argote LA (1988) Geología preliminar de la secuencia volcanosedimentaria y serpentinitas asociadas del Jurásico (?) del área de Cuicatlán–Concepción Pápalo, Oaxaca. Rev Inst Geol Univ Nac Auton Mex 7:127–135Google Scholar
  13. Delgado-Argote LA, López MM, York D, Hall CM (1992) Geologic framework and geochronology of ultramafic complexes of southern Mexico. Can J Earth Sci 29:1590–1604CrossRefGoogle Scholar
  14. Echevarria G, Massoura ST, Sterckeman T, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25(3):643–651CrossRefPubMedGoogle Scholar
  15. Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:1CrossRefGoogle Scholar
  16. Gharderian SM, Baker AJM (2007) Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. J Geochem Explor 92:34–42CrossRefGoogle Scholar
  17. Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77:185–194CrossRefGoogle Scholar
  18. Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9:95–98.  https://doi.org/10.2113/gselements.9.2.95 CrossRefGoogle Scholar
  19. Hernández G, Solorio G, Vasallo L, Flores L, Maples M, Hernández D, Alcalá R (2000) Dispersión de Ni y Cr en sedimentos y suelos superficiales derivados de piroxenitas; serpentinitas y basaltos de la cuenca de San Juan de Otates Estado de Guanajuato, Mexico. Rev Mex Cienc Geol 17:127–136Google Scholar
  20. Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press, Boca RatonCrossRefGoogle Scholar
  21. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev Camb Philos Soc 83:495–508PubMedGoogle Scholar
  22. Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  23. Maldonado-Magaña A, Favela-Torres E, Rivera-Cabrera F, Volke-Sepulveda TL (2011) Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil 339:377–389CrossRefGoogle Scholar
  24. Ortiz-Hernández LE, Escamilla-Casas JC, Flores-Castro K, Ramírez-Cardona M, Acevedo-Sandoval O (2006) Características geológicas y potencial metalogenético de los principales complejos ultramáficos-máficos de México. Bol Soc Geol Mex 58:161–181Google Scholar
  25. Paulo-Pereira M, de Almeida-Rodriguez LC, Fogaroli-Correa F, Mauro-de-Castro E, Erlo-Ribeiro V, Jose-Pereira F (2015) Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees 30:807–814CrossRefGoogle Scholar
  26. Rajakaruna N, Bohm BA (2002) Ultramafic and its vegetation: a preliminary study from Sri Lanka. J Appl Bot 76:20–28Google Scholar
  27. Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65CrossRefGoogle Scholar
  28. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224CrossRefPubMedGoogle Scholar
  29. Reeves RD, Baker AJM, Romero R (2007a) The ultramafic flora of the Santa Elena peninsula, Costa Rica: a biogeochemical reconnaissance. J Geochem Explor 93:153–159CrossRefGoogle Scholar
  30. Reeves RD, Baker AJM, Thierry B, Echevarria G, Miranda ZJG (2007b) The flora and biogeochemistry of the ultramafic soils of Goias state, Brazil. Plant Soil 293:107–119CrossRefGoogle Scholar
  31. Ruiz-Olivares A, González-Chávez MCA, Carrillo-González R, Reyes-Ramos M, Suarez Espinosa J (2016) Dendrorremediación de Suelos Severamente Contaminados con Residuos del Reciclaje de Baterías Ácidas de Plomo. Agroproductividad 9:68–69Google Scholar
  32. Sarukhán J, Koleff P, Carabias J, Soberon J, Dirzo R, Llorente-Bousquets J, Halffter G, Gonzalez R, March I, Mohar A, Anta S, de la Maza J (2009) Capital natural de México. Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, MéxicoGoogle Scholar
  33. Sinhal VK, Srivastava A, Singh VP (2010) EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol 31:255–259PubMedGoogle Scholar
  34. Solís L (2006) Etnoecología cuicateca en San Lorenzo Pápalo, Oaxaca. M.Sc. Thesis. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, MexicoGoogle Scholar
  35. van der Ent A, Reeves RD, Baker AJM, Pollard J, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  36. van der Ent A, Callahan DL, Noller BN, Mesjasz-Prybylowicz J, Prybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861.  https://doi.org/10.1038/srep4186 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Villaseñor JL (2004) Los géneros de plantas vasculares de la flora de México. Bol Soc Bot Mex 75:105–135Google Scholar
  38. Whittaker RH (1954) The ecology of serpentine soils. Ecology 35:258–288CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2018

Authors and Affiliations

  • Dulce Montserrat Navarrete Gutiérrez
    • 1
  • Marie-Noëlle Pons
    • 2
  • Jesús Axayacatl Cuevas Sánchez
    • 3
  • Guillaume Echevarria
    • 1
  1. 1.Laboratoire Sols et EnvironnementUniversité de Lorraine-INRAVandœuvre-lès-Nancy CedexFrance
  2. 2.Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine-CNRSNancy CedexFrance
  3. 3.Universidad Autónoma ChapingoTexcoco de MoraMexico

Personalised recommendations