Ecological Research

, Volume 33, Issue 3, pp 593–608 | Cite as

Diversity and functional traits of lichens in ultramafic areas: a literature-based worldwide analysis integrated by field data at the regional scale

  • Sergio E. Favero-Longo
  • Enrica Matteucci
  • Paolo Giordani
  • Alexander G. Paukov
  • Nishanta Rajakaruna
Special Feature Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology


While higher plant communities found on ultramafics are known to display peculiar characteristics, the distinguishability of any peculiarity in lichen communities is still a matter of contention. Other biotic or abiotic factors, rather than substrate chemistry, may contribute to differences in species composition reported for lichens on adjacent ultramafic and non-ultramafic areas. This work examines the lichen biota of ultramafics, at global and regional scales, with reference to species-specific functional traits. An updated world list of lichens on ultramafic substrates was analyzed to verify potential relationships between diversity and functional traits of lichens in different Köppen–Geiger climate zones. Moreover, a survey of diversity and functional traits in saxicolous communities on ultramafic and non-ultramafic substrates was conducted in Valle d’Aosta (North-West Italy) to verify whether a relationship can be detected between substrate and functional traits that cannot be explained by other environmental factors related to altitude. Analyses (unweighted pair group mean average clustering, canonical correspondence analysis, similarity-difference-replacement simplex approach) of global lichen diversity on ultramafic substrates (2314 reports of 881 taxa from 43 areas) displayed a zonal species distribution in different climate zones rather than an azonal distribution driven by the shared substrate. Accordingly, variations in the frequency of functional attributes reflected reported adaptations to the climate conditions of the different geographic areas. At the regional scale, higher similarity and lower species replacement were detected at each altitude, independent from the substrate, suggesting that altitude-related climate factors prevail over putative substrate–factors in driving community assemblages. In conclusion, data do not reveal peculiarities in lichen diversity or the frequency of functional traits in ultramafic areas.


Functional traits Lichen Köppen–Geiger climate zones Serpentine Ultramafic 



EM was the recipient of a postdoctoral fellowship (RICERCA FSE 2011–2012, funded by the European Union, Italian Ministry of Labour and Social Policies, Regione Autonoma Valle d’Aosta: agreement 10016/DPLF/28June2012). The authors are grateful to Bianca Bovero (University of Torino) for her assistance during fieldwork and to Rosanna Piervittori (University of Torino) for helpful discussions. The authors thank two reviewers for their useful and constructive comments which helped improve the quality of the manuscript. The work of AP is financially supported by RFBR (Grants 15-04-05971 and 16-04-01346).

Supplementary material

11284_2018_1573_MOESM1_ESM.xlsx (281 kb)
Supplementary material 1 (XLSX 280 kb)
11284_2018_1573_MOESM2_ESM.pdf (127 kb)
Supplementary material 2 (PDF 126 kb)


  1. Anacker BL (2014) The nature of serpentine endemism. Am J Bot 10:219–224. CrossRefGoogle Scholar
  2. Aptroot A, John V (2015) An historical lichen collection from New Caledonia. Herzogia 28:307–321. CrossRefGoogle Scholar
  3. Aptroot A, Van de Vijver B, Lebouvier M, Ertz D (2011) Lichens of Ile Amsterdam and Ile Saint Paul (TAAF, southern Indian Ocean). Nova Hedwigia 92:343–367. CrossRefGoogle Scholar
  4. Armstrong RA (1981) Field experiments on the dispersal, establishment and colonization of lichens on a slate rock surface. Environ Exp Bot 21:115–120. CrossRefGoogle Scholar
  5. Bilovitz PO, Mayrhofer H (2009) A contribution to the lichenized fungi of Bosnia and Herzegovina. Fritschiana (Graz) 65:53–56Google Scholar
  6. Boustie J, Tomasi S, Grube M (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10:287–307. CrossRefGoogle Scholar
  7. Brodo IM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, New York, pp 401–441CrossRefGoogle Scholar
  8. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Croom HelmGoogle Scholar
  9. Candan M, Türk AO (2008) Lichens of Malatya, Elazığ and Adıyaman provinces (Turkey). Mycotaxon 105:19–22Google Scholar
  10. Clauzade G, Roux C (1985) Likenoj de Okcidenta Europo. Ilustrita determinlibro. Bull Soc Bot Centre-Ouest 7:3–893Google Scholar
  11. Consortium of North American Lichen Herbaria (CNALH) (2017) Accessed 9 Sept 2017
  12. Deduke C, Halden NM, Piercey-Normore MD (2016) Comparing element composition of rock substratum with lichen communities and the fecundity of Arctoparmelia and Xanthoparmelia species. Botany 94:41–51. CrossRefGoogle Scholar
  13. Divakar PK, Crespo A (2015) Molecular phylogenetic and phylogenomic approaches in studies of lichen systematics and evolution. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Modern methods and approaches in lichen systematics and culture techniques, vol 2. Springer, New Delhi, pp 45–60Google Scholar
  14. Elix JA, Stocker-Wörgötter E (2008) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 104–133CrossRefGoogle Scholar
  15. Favero-Longo SE (2014) Lichens on metal-rich substrates. In: Rajakaruna N, Boyd R, Harris T (eds) Plant ecology and evolution in harsh environments. Nova Publishers, New York, pp 53–76Google Scholar
  16. Favero-Longo SE, Piervittori R (2009) Measuring the biodiversity of saxicolous lichens above timberline with reference to environmental factors: the case-study of a Natura 2000 site of western Alps. Phytocoenologia 39:51–78. CrossRefGoogle Scholar
  17. Favero-Longo SE, Isocrono D, Piervittori R (2004) Lichens and ultramafic rocks: a review. Lichenologist 36:391–404. CrossRefGoogle Scholar
  18. Favero-Longo SE, Siniscalco C, Piervittori R (2006) Plant and lichen colonization in an asbestos mine: spontaneous bioattenuation limits air dispersion of fibres. Plant Biosyst 140:190–205. CrossRefGoogle Scholar
  19. Favero-Longo SE, Matteucci E, Morando M, Rolfo F, Harris T, Piervittori R (2015) Metals and secondary metabolites in saxicolous lichen communities on ultramafic and non-ultramafic rocks of the Western Italian Alps. Austral J Bot 63:276–291. CrossRefGoogle Scholar
  20. Fryday AM (2005) The genus Porpidia in northern and western Europe, with special emphasis on collections from the British Isles. Lichenologist 37:1–35. CrossRefGoogle Scholar
  21. Gallo LM, Piervittori R (1991) La flora lichenica rupicola dei Monti Pelati di Baldissero (Canavese, Piemonte). In: Giachino PM (ed) I Monti Pelati di Baldissero. Importanza paesistica e scientifica. Atti Convegno 1991, pp. 25–31Google Scholar
  22. Galloway DJ (2009) Lichen biogeography. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 315–335Google Scholar
  23. Gilbert OL (1983) The lichens of Rhum. Trans Bot Soc Edinb 44:139–149. CrossRefGoogle Scholar
  24. Gilbert OL, James PW (1987) Field meeting on the Lizard Peninsula, Cornwall. Lichenologist 19:319–334. CrossRefGoogle Scholar
  25. Giordani P, Modenesi P, Tretiach M (2003) Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist 35:255–270. CrossRefGoogle Scholar
  26. Giordani P, Benesperi R, Rizzi G, Brunialti G (2009) New records for lichen regional floras of Italy. Webbia 64:153–158. CrossRefGoogle Scholar
  27. Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420. CrossRefGoogle Scholar
  28. Giordani P, Incerti G, Rizzi G, Rellini I, Nimis PL, Modenesi P (2014) Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J Veg Sci 25:778–792. CrossRefGoogle Scholar
  29. Giordani P, Rizzi G, Caselli A, Modenesi P, Malaspina P, Mariotti MG (2016) Fire affects the functional diversity of epilithic lichen communities. Fungal Ecol 20:49–55. CrossRefGoogle Scholar
  30. Hafellner J (1991) Die Flechtenflora eines hochgelegenen Serpentinitstockes in den Östalpen (Österreich, Steiermark). Mitt Naturwiss Vereins Steiermark Graz 121:95–106Google Scholar
  31. Hafellner J (2001) Bemerkenswerte Flechtenfunde in Österreich. Fritschiana 28:1–30Google Scholar
  32. Hakulinen R (1958) Jäkäliä Suomen serpentiinikallioilta. Ann Bot Soc Zool-Bot Fenn “Vanamo” 12:143–145Google Scholar
  33. Hansen CJ, Goertzen LR (2012) Psora icterica (Lecanorales, Psoraceae), a new and interesting disjunction from Alabama. Opuscula Philolichenum 11:49–51Google Scholar
  34. Harris TB, Olday FC, Rajakaruna N (2007) Lichens of Pine Hill, a peridotite outcrop in eastern North America. Rhodora 109:430–447.[430:LOPHAP]2.0.CO;2 CrossRefGoogle Scholar
  35. Harrison S, Rajakaruna N (2011) Serpentine. The evolution and ecology of a model system. University of California Press, BerkeleyGoogle Scholar
  36. Hauck M, Huneck S, Elix JA, Paul A (2007) Does secondary chemistry enable lichens to grow on iron-rich substrates? Flora 202:471–478. CrossRefGoogle Scholar
  37. Hauck M, Jürgens S-R, Willenbruch K, Huneck S, Leuschner C (2009) Dissociation and metal-binding characteristics of yellow substances suggest a relationships with site preferences of lichens. Ann Bot 103:13–22. CrossRefPubMedGoogle Scholar
  38. Hauck M, Böning J, Jacob M, Dittrich S, Feussner I, Leuschner C (2013) Lichen substance concentrations in the lichen Hypogymnia physodes are correlated with heavy metal concentrations in the substratum. Environ Exp Bot 85:58–63. CrossRefGoogle Scholar
  39. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, BerlinCrossRefGoogle Scholar
  40. Index Fungorum (2017) Accessed 9 Sept 2017
  41. Isocrono D, Favero Longo SE, Piervittori R (2008) La flora lichenica del Parco Naturale del Mont Avic (Valle d’Aosta, Italia). Rev Valdôtaine Hist Nat 62:77–93Google Scholar
  42. Kantvilas G (1991) Records of east African lichens in cool temperate Australia. Nordic J Bot 11:369–373. CrossRefGoogle Scholar
  43. Kocakaya M, Halici MG, Aksoy A (2014) Lichenized and lichenicolous fungi of Gevne Valley (Konya, Antalya). Turk J Bot 38:358–369. CrossRefGoogle Scholar
  44. Kossowska M (2001) Epilithic lichens on serpentinite rocks in Poland. Pol Bot J 46:191–197Google Scholar
  45. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263. CrossRefGoogle Scholar
  46. Krause W, Klement O (1958) Zur Kenntnis der Flora und Vegetation auf Serpentinstandorten des Balkans. 3. Felsflechten-Gesellschaften im Gosrovic-Gebiet (Bosnien) und Zlatibor-Gebirge (Serbien). Vegetatio 8:1–19CrossRefGoogle Scholar
  47. Krause W, Klement O (1962) Zur Kenntnis der Flora und Vegetation aus Sepentinstandorten des Balkans. 5. Flechten und Flechtengesellschaften auf Nord-Euboa (Geiechenland). Nova Hedwigia 4:189–262Google Scholar
  48. Kretschmer L (1931) Die Pflanzengesellschaften auf Serpentin im Gurhofgraben bei Melk. Verh Zool-Bot Ges Wien 80:163–208Google Scholar
  49. Krzewicka B (2009) The ‘Verrucaria fuscella group’ in Poland with some nomenclatorial remarks. Acta Soc Bot Poloniae 78:229–234. CrossRefGoogle Scholar
  50. Lammermayr L (1934) Überinstimmung und Unterschiede in der Pflanzendecke über Serpentin und Magnesit. Mitteilungen der Naturwissenschaftlichen Vereins für Steiermark, Graz 71:41–62Google Scholar
  51. Malpas J (1992) Serpentine and the geology of serpentinized rocks. In: Roberts A, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Publishers, Dordrecht, pp 7–30CrossRefGoogle Scholar
  52. Matteucci E, Bovero B, Vanacore Falco I, Piervittori R (2015) Comunità licheniche rupicole in Valle d’Aosta: confronti a quote differenti. Rev Valdôtaine Hist Nat 69:61–77Google Scholar
  53. Matteucci E, Occhipinti A, Piervittori R, Maffei ME, Favero-Longo SE (2017) Morphological, secondary metabolite and ITS (rDNA) variability within usnic acid-containing lichen thalli of Xanthoparmelia explored at the local scale of rock outcrop in W-Alps. Chem Biodivers 14:e1600483. CrossRefGoogle Scholar
  54. Medeiros ID, Fryday AM, Rajakaruna N (2014) Additional lichen records and mineralogical data from metal-contaminated sites in Maine. Rhodora 116:323–347. CrossRefGoogle Scholar
  55. Morando M, Favero-Longo SE, Carrer M, Matteucci E, Nascimbene J, Sandrone S, Appolonia L, Piervittori R (2017) Dispersal patterns of meiospores shape population spatial structure of saxicolous lichens. Lichenologist 49:397–413. CrossRefGoogle Scholar
  56. Nash TH III (2008) Lichen biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  57. Nelson PR, McCune B, Roland C, Stehn S (2015) Non-parametric methods reveal non-linear functional trait variation of lichens along environmental and fire age gradients. J Veg Sci 26:848–865. CrossRefGoogle Scholar
  58. Nguyen KH, Chollet-Krugler M, Gouault N, Tomasi S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 30:1490–1508. CrossRefPubMedGoogle Scholar
  59. Nimis PL (1996) Towards a checklist of Mediterranean lichens. Bocconea 6:5–17Google Scholar
  60. Nimis PL (2016) The lichens of Italy. A second annotated catalogue. EUT, TriesteGoogle Scholar
  61. O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison S, Rajakaruna N (eds) Serpentine. The evolution and ecology of a model system. University of California Press, Berkeley, pp 97–137Google Scholar
  62. Palmqvist K (2000) Tansley review no. 117: carbon economy in lichens. New Phytol 148:11–36. CrossRefGoogle Scholar
  63. Paukov AG (2009). The lichen flora of serpentine outcrops in the Middle Urals of Russia. N E Nat 16 (Special Issue No. 5):341–350Google Scholar
  64. Paukov AG, Trapeznikova SN (2005) Lithophilous lichens of Middle Urals. Folia Cryptog Estonica 41:81–88Google Scholar
  65. Paukov A, Sipman HJM, Kukwa M, Repin R, Teptina A (2017) New lichen records from the mountains Kinabalu and Tambuyukon (Kinabalu Park, Malaysian Borneo). Herzogia 30:237–252CrossRefGoogle Scholar
  66. Peksa O (2011) Lišejníky národní přírodní památky Křížky. Sborník muzea Karlovarského kraje 19:259–272Google Scholar
  67. Pichi-Sermolli R (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Tevere (Toscana). Webbia 6:1–380. CrossRefGoogle Scholar
  68. Podani J (2001) SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s Manual. Scientia Publishing, BudapestGoogle Scholar
  69. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 120:1625–1638. CrossRefGoogle Scholar
  70. Poelt J (1975) Squamarina serpentinii species nova (Lichenes, Lecanoraceae) aus Serbien. Herzogia 3:425–432Google Scholar
  71. Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601. CrossRefGoogle Scholar
  72. Rajakaruna N (2017) Lessons on evolution from the study of edaphic specialization. Bot Rev.
  73. Rajakaruna N, Knudsen K, Fryday AM, O’Dell RE, Pope N, Olday FC, Woolhouse S (2012) Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA. Lichenologist 44:695–714. CrossRefGoogle Scholar
  74. Ritter-Studnička H, Klement O (1968) Über Flechtenarten und deren Gesellschaften auf Serpentin in Bosnien. Oesterr Bot Z 115:93–99CrossRefGoogle Scholar
  75. Rubel F, Brugger K, Haslinger K, Auer I (2017) The climate of the European Alps: shift of very high resolution Köppen–Geiger climate zones 1800–2100. Meteorol Z 26:115–125. CrossRefGoogle Scholar
  76. Ryan BD (1988) Marine and maritime lichens on serpentine rocks on Fidalgo Island, Washington. Bryologist 91:186–190. CrossRefGoogle Scholar
  77. Sambo E (1927) I licheni del Monte Ferrato (Toscana). Nuovo Giornale Botanico Italiano 34:333–358Google Scholar
  78. Sambo E (1937) Sull’azione vicariante del magnesio invece del calcio in licheni calcicoli di roccia alcalica. Nuovo Giorn Bot Ital 24:246–250. CrossRefGoogle Scholar
  79. Sánchez-Biezma MJ, López de Silanes ME (1999) Porpidia nadvornikiana, a species of ultrabasic rocks: second record for Europe. Lichenologist 31:637–639. CrossRefGoogle Scholar
  80. Sánchez-Biezma Serrano MJ, Alvarez Andrés J, de Silanes López, Vázquez ME (2001) Líquenes de las rocas ultamáficas en la Sierra de A Capelada (A Coruña, NW de España). Bot Complut 25:261–269Google Scholar
  81. Sánchez-Biezma MJ, Carballal R, López de Silanes ME (1996) Algunos líquenes de rocas básicas y ultrabásicas nuevos para el nord de España. Cryptogamie Bryologie Lichénologie 17:203–211Google Scholar
  82. Scheidegger C (2016) As thick as three in a bed. Mol Ecol 25:3261–3263. CrossRefPubMedGoogle Scholar
  83. Seaward MRD (1977) Lichen ecology. Academic, LondonGoogle Scholar
  84. Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58. CrossRefGoogle Scholar
  85. Sigal LL (1989) The lichens of serpentine rocks and soils in California. Mycotaxon 34:221–238Google Scholar
  86. Sipman HJM (1993) Lichens from Mount Kinabalu. Trop Bryol 8:281–314Google Scholar
  87. Sirois L, Lutzoni F, Grandtner MM (1987) Les lichens sur serpentine et anphibolite du plateau du mont Albert, Gaspésie, Québec. Can J Bot 66:851–862. CrossRefGoogle Scholar
  88. Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. British Lichen Society, LondonGoogle Scholar
  89. Suza J (1927) Lichenologický ráz západočeských serpentinů. Čas Morav Zemsk Mus 25:251–281Google Scholar
  90. Takala K, Seaward MRD (1978) Lichens of the Niinivaara serpentinite region, E. Finland. Memoranda Soc Fauna Fl Fenn 54:59–63Google Scholar
  91. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s guide:software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  92. Ter Braak CJ, Verdonschot PF (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289. CrossRefGoogle Scholar
  93. van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. CrossRefGoogle Scholar
  94. Verseghy K (1974) Nachtrag II. zum “TypenVerzeichnis der Flechtensammlung in der Botanischen Abteilung des Ungarischen Naturwissenschaftlichen Museums”. Stud Bot Hung 9:23–29Google Scholar
  95. Vězda A (1972) Haplocarpon nadvornikianum Vězda sp. nov. Preslia 44:208–212Google Scholar
  96. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. CrossRefGoogle Scholar
  97. von Brackel W (2007) Zur Flechtenflora der Serpentinitfelsen in Nordostbayern. Hoppea 68:253–268Google Scholar
  98. Wirth V (1972) Die Silikatflechten Gemainschaften im ausseralpinen Zentraleuropa. Diss Bot 17:1–306Google Scholar
  99. Wirth V (1995) Die Flechten. Baden-Württembergs. Ulmer, StuttgartGoogle Scholar
  100. Zahlbruckner A (1907) Aufzälung der von Dr. H. Bretzl in Griechenland gesammelten Flechten. Hedwigia 47:60–65Google Scholar
  101. Zedda L, Rambold G (2015) The diversity of lichenised fungi: Ecosystem functions and ecosystem services. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Modern methods and approaches in lichen systematics and culture techniques, vol 2. Springer, New Delhi, pp 121–145Google Scholar

Copyright information

© The Ecological Society of Japan 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi di TorinoTurinItaly
  2. 2.Dipartimento di FarmaciaUniversità di GenovaGenoaItaly
  3. 3.Department of Biodiversity and Bioecology, Institute of Natural SciencesUral Federal UniversityEkaterinburgRussia
  4. 4.Biological Sciences DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  5. 5.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations