Skip to main content
Log in

Diversity and functional traits of lichens in ultramafic areas: a literature-based worldwide analysis integrated by field data at the regional scale

  • Special Feature
  • Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology
  • Published:
Ecological Research

Abstract

While higher plant communities found on ultramafics are known to display peculiar characteristics, the distinguishability of any peculiarity in lichen communities is still a matter of contention. Other biotic or abiotic factors, rather than substrate chemistry, may contribute to differences in species composition reported for lichens on adjacent ultramafic and non-ultramafic areas. This work examines the lichen biota of ultramafics, at global and regional scales, with reference to species-specific functional traits. An updated world list of lichens on ultramafic substrates was analyzed to verify potential relationships between diversity and functional traits of lichens in different Köppen–Geiger climate zones. Moreover, a survey of diversity and functional traits in saxicolous communities on ultramafic and non-ultramafic substrates was conducted in Valle d’Aosta (North-West Italy) to verify whether a relationship can be detected between substrate and functional traits that cannot be explained by other environmental factors related to altitude. Analyses (unweighted pair group mean average clustering, canonical correspondence analysis, similarity-difference-replacement simplex approach) of global lichen diversity on ultramafic substrates (2314 reports of 881 taxa from 43 areas) displayed a zonal species distribution in different climate zones rather than an azonal distribution driven by the shared substrate. Accordingly, variations in the frequency of functional attributes reflected reported adaptations to the climate conditions of the different geographic areas. At the regional scale, higher similarity and lower species replacement were detected at each altitude, independent from the substrate, suggesting that altitude-related climate factors prevail over putative substrate–factors in driving community assemblages. In conclusion, data do not reveal peculiarities in lichen diversity or the frequency of functional traits in ultramafic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anacker BL (2014) The nature of serpentine endemism. Am J Bot 10:219–224. https://doi.org/10.3732/ajb.1300349

    Article  Google Scholar 

  • Aptroot A, John V (2015) An historical lichen collection from New Caledonia. Herzogia 28:307–321. https://doi.org/10.13158/heia.28.2.2015.307

    Article  Google Scholar 

  • Aptroot A, Van de Vijver B, Lebouvier M, Ertz D (2011) Lichens of Ile Amsterdam and Ile Saint Paul (TAAF, southern Indian Ocean). Nova Hedwigia 92:343–367. https://doi.org/10.1127/0029-5035/2011/0092-0343

    Article  Google Scholar 

  • Armstrong RA (1981) Field experiments on the dispersal, establishment and colonization of lichens on a slate rock surface. Environ Exp Bot 21:115–120. https://doi.org/10.1016/0098-8472(81)90016-2

    Article  Google Scholar 

  • Bilovitz PO, Mayrhofer H (2009) A contribution to the lichenized fungi of Bosnia and Herzegovina. Fritschiana (Graz) 65:53–56

    Google Scholar 

  • Boustie J, Tomasi S, Grube M (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10:287–307. https://doi.org/10.1007/s11101-010-9201-1

    Article  CAS  Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, New York, pp 401–441

    Chapter  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Croom Helm

    Google Scholar 

  • Candan M, Türk AO (2008) Lichens of Malatya, Elazığ and Adıyaman provinces (Turkey). Mycotaxon 105:19–22

    Google Scholar 

  • Clauzade G, Roux C (1985) Likenoj de Okcidenta Europo. Ilustrita determinlibro. Bull Soc Bot Centre-Ouest 7:3–893

    Google Scholar 

  • Consortium of North American Lichen Herbaria (CNALH) (2017) http://lichenportal.org/portal/. Accessed 9 Sept 2017

  • Deduke C, Halden NM, Piercey-Normore MD (2016) Comparing element composition of rock substratum with lichen communities and the fecundity of Arctoparmelia and Xanthoparmelia species. Botany 94:41–51. https://doi.org/10.1139/cjb-2015-0141

    Article  Google Scholar 

  • Divakar PK, Crespo A (2015) Molecular phylogenetic and phylogenomic approaches in studies of lichen systematics and evolution. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Modern methods and approaches in lichen systematics and culture techniques, vol 2. Springer, New Delhi, pp 45–60

  • Elix JA, Stocker-Wörgötter E (2008) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 104–133

    Chapter  Google Scholar 

  • Favero-Longo SE (2014) Lichens on metal-rich substrates. In: Rajakaruna N, Boyd R, Harris T (eds) Plant ecology and evolution in harsh environments. Nova Publishers, New York, pp 53–76

    Google Scholar 

  • Favero-Longo SE, Piervittori R (2009) Measuring the biodiversity of saxicolous lichens above timberline with reference to environmental factors: the case-study of a Natura 2000 site of western Alps. Phytocoenologia 39:51–78. https://doi.org/10.1127/0340-269X/2009/0039-0051

    Article  Google Scholar 

  • Favero-Longo SE, Isocrono D, Piervittori R (2004) Lichens and ultramafic rocks: a review. Lichenologist 36:391–404. https://doi.org/10.1017/S0024282904014215

    Article  Google Scholar 

  • Favero-Longo SE, Siniscalco C, Piervittori R (2006) Plant and lichen colonization in an asbestos mine: spontaneous bioattenuation limits air dispersion of fibres. Plant Biosyst 140:190–205. https://doi.org/10.1080/11263500600756546

    Article  Google Scholar 

  • Favero-Longo SE, Matteucci E, Morando M, Rolfo F, Harris T, Piervittori R (2015) Metals and secondary metabolites in saxicolous lichen communities on ultramafic and non-ultramafic rocks of the Western Italian Alps. Austral J Bot 63:276–291. https://doi.org/10.1071/BT14256

    Article  CAS  Google Scholar 

  • Fryday AM (2005) The genus Porpidia in northern and western Europe, with special emphasis on collections from the British Isles. Lichenologist 37:1–35. https://doi.org/10.1017/S0024282904014628

    Article  Google Scholar 

  • Gallo LM, Piervittori R (1991) La flora lichenica rupicola dei Monti Pelati di Baldissero (Canavese, Piemonte). In: Giachino PM (ed) I Monti Pelati di Baldissero. Importanza paesistica e scientifica. Atti Convegno 1991, pp. 25–31

  • Galloway DJ (2009) Lichen biogeography. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 315–335

    Google Scholar 

  • Gilbert OL (1983) The lichens of Rhum. Trans Bot Soc Edinb 44:139–149. https://doi.org/10.1080/03746608308685380

    Article  Google Scholar 

  • Gilbert OL, James PW (1987) Field meeting on the Lizard Peninsula, Cornwall. Lichenologist 19:319–334. https://doi.org/10.1017/S0024282987000288

    Article  Google Scholar 

  • Giordani P, Modenesi P, Tretiach M (2003) Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist 35:255–270. https://doi.org/10.1016/S0024-2829(03)00028-8

    Article  Google Scholar 

  • Giordani P, Benesperi R, Rizzi G, Brunialti G (2009) New records for lichen regional floras of Italy. Webbia 64:153–158. https://doi.org/10.1080/00837792.2009.10670855

    Article  Google Scholar 

  • Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420. https://doi.org/10.1016/j.ecolind.2011.12.006

    Article  Google Scholar 

  • Giordani P, Incerti G, Rizzi G, Rellini I, Nimis PL, Modenesi P (2014) Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J Veg Sci 25:778–792. https://doi.org/10.1111/jvs.12119

    Article  Google Scholar 

  • Giordani P, Rizzi G, Caselli A, Modenesi P, Malaspina P, Mariotti MG (2016) Fire affects the functional diversity of epilithic lichen communities. Fungal Ecol 20:49–55. https://doi.org/10.1016/j.funeco.2015.11.003

    Article  Google Scholar 

  • Hafellner J (1991) Die Flechtenflora eines hochgelegenen Serpentinitstockes in den Östalpen (Österreich, Steiermark). Mitt Naturwiss Vereins Steiermark Graz 121:95–106

    Google Scholar 

  • Hafellner J (2001) Bemerkenswerte Flechtenfunde in Österreich. Fritschiana 28:1–30

    Google Scholar 

  • Hakulinen R (1958) Jäkäliä Suomen serpentiinikallioilta. Ann Bot Soc Zool-Bot Fenn “Vanamo” 12:143–145

  • Hansen CJ, Goertzen LR (2012) Psora icterica (Lecanorales, Psoraceae), a new and interesting disjunction from Alabama. Opuscula Philolichenum 11:49–51

    Google Scholar 

  • Harris TB, Olday FC, Rajakaruna N (2007) Lichens of Pine Hill, a peridotite outcrop in eastern North America. Rhodora 109:430–447. https://doi.org/10.3119/0035-4902(2007)109[430:LOPHAP]2.0.CO;2

    Article  Google Scholar 

  • Harrison S, Rajakaruna N (2011) Serpentine. The evolution and ecology of a model system. University of California Press, Berkeley

    Google Scholar 

  • Hauck M, Huneck S, Elix JA, Paul A (2007) Does secondary chemistry enable lichens to grow on iron-rich substrates? Flora 202:471–478. https://doi.org/10.1016/j.flora.2006.08.007

    Article  Google Scholar 

  • Hauck M, Jürgens S-R, Willenbruch K, Huneck S, Leuschner C (2009) Dissociation and metal-binding characteristics of yellow substances suggest a relationships with site preferences of lichens. Ann Bot 103:13–22. https://doi.org/10.1093/aob/mcn202

    Article  PubMed  CAS  Google Scholar 

  • Hauck M, Böning J, Jacob M, Dittrich S, Feussner I, Leuschner C (2013) Lichen substance concentrations in the lichen Hypogymnia physodes are correlated with heavy metal concentrations in the substratum. Environ Exp Bot 85:58–63. https://doi.org/10.1016/j.envexpbot.2012.08.011

    Article  CAS  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Book  Google Scholar 

  • Index Fungorum (2017) http://www.indexfungorum.org/. Accessed 9 Sept 2017

  • Isocrono D, Favero Longo SE, Piervittori R (2008) La flora lichenica del Parco Naturale del Mont Avic (Valle d’Aosta, Italia). Rev Valdôtaine Hist Nat 62:77–93

    Google Scholar 

  • Kantvilas G (1991) Records of east African lichens in cool temperate Australia. Nordic J Bot 11:369–373. https://doi.org/10.1111/j.1756-1051.1991.tb01416.x

    Article  Google Scholar 

  • Kocakaya M, Halici MG, Aksoy A (2014) Lichenized and lichenicolous fungi of Gevne Valley (Konya, Antalya). Turk J Bot 38:358–369. https://doi.org/10.3906/bot-1303-29

    Article  Google Scholar 

  • Kossowska M (2001) Epilithic lichens on serpentinite rocks in Poland. Pol Bot J 46:191–197

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Krause W, Klement O (1958) Zur Kenntnis der Flora und Vegetation auf Serpentinstandorten des Balkans. 3. Felsflechten-Gesellschaften im Gosrovic-Gebiet (Bosnien) und Zlatibor-Gebirge (Serbien). Vegetatio 8:1–19

    Article  Google Scholar 

  • Krause W, Klement O (1962) Zur Kenntnis der Flora und Vegetation aus Sepentinstandorten des Balkans. 5. Flechten und Flechtengesellschaften auf Nord-Euboa (Geiechenland). Nova Hedwigia 4:189–262

    Google Scholar 

  • Kretschmer L (1931) Die Pflanzengesellschaften auf Serpentin im Gurhofgraben bei Melk. Verh Zool-Bot Ges Wien 80:163–208

    Google Scholar 

  • Krzewicka B (2009) The ‘Verrucaria fuscella group’ in Poland with some nomenclatorial remarks. Acta Soc Bot Poloniae 78:229–234. https://doi.org/10.5586/asbp.2009.029

    Article  Google Scholar 

  • Lammermayr L (1934) Überinstimmung und Unterschiede in der Pflanzendecke über Serpentin und Magnesit. Mitteilungen der Naturwissenschaftlichen Vereins für Steiermark, Graz 71:41–62

    Google Scholar 

  • Malpas J (1992) Serpentine and the geology of serpentinized rocks. In: Roberts A, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Publishers, Dordrecht, pp 7–30

    Chapter  Google Scholar 

  • Matteucci E, Bovero B, Vanacore Falco I, Piervittori R (2015) Comunità licheniche rupicole in Valle d’Aosta: confronti a quote differenti. Rev Valdôtaine Hist Nat 69:61–77

    Google Scholar 

  • Matteucci E, Occhipinti A, Piervittori R, Maffei ME, Favero-Longo SE (2017) Morphological, secondary metabolite and ITS (rDNA) variability within usnic acid-containing lichen thalli of Xanthoparmelia explored at the local scale of rock outcrop in W-Alps. Chem Biodivers 14:e1600483. https://doi.org/10.1002/cbdv.201600483

    Article  CAS  Google Scholar 

  • Medeiros ID, Fryday AM, Rajakaruna N (2014) Additional lichen records and mineralogical data from metal-contaminated sites in Maine. Rhodora 116:323–347. https://doi.org/10.3119/13-26

    Article  Google Scholar 

  • Morando M, Favero-Longo SE, Carrer M, Matteucci E, Nascimbene J, Sandrone S, Appolonia L, Piervittori R (2017) Dispersal patterns of meiospores shape population spatial structure of saxicolous lichens. Lichenologist 49:397–413. https://doi.org/10.1017/S0024282917000184

    Article  Google Scholar 

  • Nash TH III (2008) Lichen biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nelson PR, McCune B, Roland C, Stehn S (2015) Non-parametric methods reveal non-linear functional trait variation of lichens along environmental and fire age gradients. J Veg Sci 26:848–865. https://doi.org/10.1111/jvs.12286

    Article  Google Scholar 

  • Nguyen KH, Chollet-Krugler M, Gouault N, Tomasi S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 30:1490–1508. https://doi.org/10.1039/C3NP70064J

    Article  PubMed  CAS  Google Scholar 

  • Nimis PL (1996) Towards a checklist of Mediterranean lichens. Bocconea 6:5–17

    Google Scholar 

  • Nimis PL (2016) The lichens of Italy. A second annotated catalogue. EUT, Trieste

    Google Scholar 

  • O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison S, Rajakaruna N (eds) Serpentine. The evolution and ecology of a model system. University of California Press, Berkeley, pp 97–137

    Google Scholar 

  • Palmqvist K (2000) Tansley review no. 117: carbon economy in lichens. New Phytol 148:11–36. https://doi.org/10.1046/j.1469-8137.2000.00732.x

    Article  CAS  Google Scholar 

  • Paukov AG (2009). The lichen flora of serpentine outcrops in the Middle Urals of Russia. N E Nat 16 (Special Issue No. 5):341–350

  • Paukov AG, Trapeznikova SN (2005) Lithophilous lichens of Middle Urals. Folia Cryptog Estonica 41:81–88

    Google Scholar 

  • Paukov A, Sipman HJM, Kukwa M, Repin R, Teptina A (2017) New lichen records from the mountains Kinabalu and Tambuyukon (Kinabalu Park, Malaysian Borneo). Herzogia 30:237–252

    Article  Google Scholar 

  • Peksa O (2011) Lišejníky národní přírodní památky Křížky. Sborník muzea Karlovarského kraje 19:259–272

    Google Scholar 

  • Pichi-Sermolli R (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Tevere (Toscana). Webbia 6:1–380. https://doi.org/10.1080/00837792.1948.10669585

    Article  Google Scholar 

  • Podani J (2001) SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s Manual. Scientia Publishing, Budapest

    Google Scholar 

  • Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 120:1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x

    Article  Google Scholar 

  • Poelt J (1975) Squamarina serpentinii species nova (Lichenes, Lecanoraceae) aus Serbien. Herzogia 3:425–432

    Google Scholar 

  • Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601. https://doi.org/10.1006/lich.1996.0052

    Article  Google Scholar 

  • Rajakaruna N (2017) Lessons on evolution from the study of edaphic specialization. Bot Rev. https://doi.org/10.1007/s12229-017-9193-2

  • Rajakaruna N, Knudsen K, Fryday AM, O’Dell RE, Pope N, Olday FC, Woolhouse S (2012) Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA. Lichenologist 44:695–714. https://doi.org/10.1017/S0024282912000205

    Article  Google Scholar 

  • Ritter-Studnička H, Klement O (1968) Über Flechtenarten und deren Gesellschaften auf Serpentin in Bosnien. Oesterr Bot Z 115:93–99

    Article  Google Scholar 

  • Rubel F, Brugger K, Haslinger K, Auer I (2017) The climate of the European Alps: shift of very high resolution Köppen–Geiger climate zones 1800–2100. Meteorol Z 26:115–125. https://doi.org/10.1127/metz/2016/0816

    Article  Google Scholar 

  • Ryan BD (1988) Marine and maritime lichens on serpentine rocks on Fidalgo Island, Washington. Bryologist 91:186–190. https://doi.org/10.2307/3243217

    Article  Google Scholar 

  • Sambo E (1927) I licheni del Monte Ferrato (Toscana). Nuovo Giornale Botanico Italiano 34:333–358

    Google Scholar 

  • Sambo E (1937) Sull’azione vicariante del magnesio invece del calcio in licheni calcicoli di roccia alcalica. Nuovo Giorn Bot Ital 24:246–250. https://doi.org/10.1080/11263503709437956

    Article  Google Scholar 

  • Sánchez-Biezma MJ, López de Silanes ME (1999) Porpidia nadvornikiana, a species of ultrabasic rocks: second record for Europe. Lichenologist 31:637–639. https://doi.org/10.1006/lich.1999.0238

    Article  Google Scholar 

  • Sánchez-Biezma Serrano MJ, Alvarez Andrés J, de Silanes López, Vázquez ME (2001) Líquenes de las rocas ultamáficas en la Sierra de A Capelada (A Coruña, NW de España). Bot Complut 25:261–269

    Google Scholar 

  • Sánchez-Biezma MJ, Carballal R, López de Silanes ME (1996) Algunos líquenes de rocas básicas y ultrabásicas nuevos para el nord de España. Cryptogamie Bryologie Lichénologie 17:203–211

    Google Scholar 

  • Scheidegger C (2016) As thick as three in a bed. Mol Ecol 25:3261–3263. https://doi.org/10.1111/mec.13710/full

    Article  PubMed  Google Scholar 

  • Seaward MRD (1977) Lichen ecology. Academic, London

    Google Scholar 

  • Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58. https://doi.org/10.1017/S0269-915X(05)00201-6

    Article  Google Scholar 

  • Sigal LL (1989) The lichens of serpentine rocks and soils in California. Mycotaxon 34:221–238

    Google Scholar 

  • Sipman HJM (1993) Lichens from Mount Kinabalu. Trop Bryol 8:281–314

    Google Scholar 

  • Sirois L, Lutzoni F, Grandtner MM (1987) Les lichens sur serpentine et anphibolite du plateau du mont Albert, Gaspésie, Québec. Can J Bot 66:851–862. https://doi.org/10.1139/b88-124

    Article  Google Scholar 

  • Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. British Lichen Society, London

    Google Scholar 

  • Suza J (1927) Lichenologický ráz západočeských serpentinů. Čas Morav Zemsk Mus 25:251–281

    Google Scholar 

  • Takala K, Seaward MRD (1978) Lichens of the Niinivaara serpentinite region, E. Finland. Memoranda Soc Fauna Fl Fenn 54:59–63

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s guide:software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • Ter Braak CJ, Verdonschot PF (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289. https://doi.org/10.1007/BF00877430

    Article  Google Scholar 

  • van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  • Verseghy K (1974) Nachtrag II. zum “TypenVerzeichnis der Flechtensammlung in der Botanischen Abteilung des Ungarischen Naturwissenschaftlichen Museums”. Stud Bot Hung 9:23–29

    Google Scholar 

  • Vězda A (1972) Haplocarpon nadvornikianum Vězda sp. nov. Preslia 44:208–212

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • von Brackel W (2007) Zur Flechtenflora der Serpentinitfelsen in Nordostbayern. Hoppea 68:253–268

    Google Scholar 

  • Wirth V (1972) Die Silikatflechten Gemainschaften im ausseralpinen Zentraleuropa. Diss Bot 17:1–306

    Google Scholar 

  • Wirth V (1995) Die Flechten. Baden-Württembergs. Ulmer, Stuttgart

    Google Scholar 

  • Zahlbruckner A (1907) Aufzälung der von Dr. H. Bretzl in Griechenland gesammelten Flechten. Hedwigia 47:60–65

    Google Scholar 

  • Zedda L, Rambold G (2015) The diversity of lichenised fungi: Ecosystem functions and ecosystem services. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Modern methods and approaches in lichen systematics and culture techniques, vol 2. Springer, New Delhi, pp 121–145

Download references

Acknowledgements

EM was the recipient of a postdoctoral fellowship (RICERCA FSE 2011–2012, funded by the European Union, Italian Ministry of Labour and Social Policies, Regione Autonoma Valle d’Aosta: agreement 10016/DPLF/28June2012). The authors are grateful to Bianca Bovero (University of Torino) for her assistance during fieldwork and to Rosanna Piervittori (University of Torino) for helpful discussions. The authors thank two reviewers for their useful and constructive comments which helped improve the quality of the manuscript. The work of AP is financially supported by RFBR (Grants 15-04-05971 and 16-04-01346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio E. Favero-Longo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 280 kb)

Supplementary material 2 (PDF 126 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favero-Longo, S.E., Matteucci, E., Giordani, P. et al. Diversity and functional traits of lichens in ultramafic areas: a literature-based worldwide analysis integrated by field data at the regional scale. Ecol Res 33, 593–608 (2018). https://doi.org/10.1007/s11284-018-1573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-018-1573-5

Keywords

Navigation