Skip to main content
Log in

Responses of the photosynthetic apparatus of Abies koreana to drought under different light conditions

  • Special Feature
  • Climate Change and Biodiversity Conservation in East Asia as a token of memory for the 7th EAFES in Daegu, Korea
  • Published:
Ecological Research

A Correction to this article was published on 03 March 2018

This article has been updated

Abstract

The threat of drought to trees is predicted to increase due to global warming. In a forest stand, the physiological responses of trees can differ depending on the light conditions. We analyzed photosynthetic rate, photopigment, and chlorophyll a fluorescence transient (OJIP test) of Abies koreana E.H. Wilson, under different light (full sunlight and 35 and 75% shading) and water conditions (well-watering, W; and no-watering, NW) to examine the combined effect of light and water. After 21 days of no-watering, we observed decreases in the photosynthetic rate and photopigment contents and quality, impairment of electron transfer from primary to secondary quinone acceptor, inactivation of reaction center, and lower photosynthetic performance index, especially under full sunlight. The time required for recovery after re-watering was also slower under full sunlight. In conclusion, the adverse effects of drought on light absorption and utility of A. koreana in the photosynthetic process were much greater under high light intensity compared to shading conditions, which alleviated these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 03 March 2018

    The correct name and the affiliation of the third author should be ‘‘Su Young Woo’’, and ‘‘Department of Environmental Horticulture, College of Natural Science, University of Seoul, Seoul 02504, Republic of Korea”.

References

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L (2011) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168(13):1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Alves PLCA, Magalhães CAN (2002) The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot Rev 68(2):193–208

    Article  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsi DC, Major JE, Mosseler A, Campbell M (2009) Genetic variation and control of chloroplast pigment concentrations and related needle-level traits in Picea rubens, Picea mariana, and their hybrids: moisture and light environmental effects. Trees 23:555–571

    Article  CAS  Google Scholar 

  • Bjorkman O (1981) Response to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Response to the physical environment, encyclopedia of plant physiology, new series, 12A. Springer, Berlin, pp 57–107

    Google Scholar 

  • Brzostek ER, Dragoni D, Schmid HP, Rahman AF, Sims D, Wayson CA, Johnson DJ, Phillips RP (2014) Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob Change Biol 20:2531–2539

    Article  Google Scholar 

  • Bussotti F, Strasser RJ, Schaub M (2007) Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: a review. Environ Pollut 147:430–437

    Article  CAS  PubMed  Google Scholar 

  • Cailleret M, Nourtier M, Amm A, Durand-Gillmann M, Davi H (2014) Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann For Sci 71:643–657

    Article  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288

    Article  CAS  PubMed  Google Scholar 

  • Fini A, Ferrini F, Ferdinando MD, Brunetti C, Giordano C, Gerini F, Tattini M (2014) Acclimation to partial shading or full sunlight determines the performance of container-grown Fraxinus ornus to subsequent drought stress. Urban For Urban Green 13(1):63–70

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barón M, Bota J, Ducruet J-M, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomás M, Medrano H (2009) Photosynthesis limitation during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V berlandieri × V rupestris). J Exp Bot 66(8):2361–2377

    Article  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100. https://doi.org/10.1104/pp.110.166181

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810

    Article  PubMed  Google Scholar 

  • IPCC (2013) The Fifth Assessment Report (AR5) climatic change: the physical science basis. Intergovernmental Panel on Climate Change

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta Bioenerg 1817:182–193

    Article  CAS  Google Scholar 

  • Jiménez MD, Pardos M, Puértolas J, Kleczkowski LA, Pardos JA (2009) Deep shade alters the acclimation response to moderate water stress in Quercus Suber L. Forestry 82(3):285–298

    Article  Google Scholar 

  • Kim Y-S, Chang C-S, Kim C-S, Gardner M (2011) The IUCN red list of threatened species 2011: e.T31244A9618913. 18 January 2017

  • Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo Y, Sala OE, Smith MD (2015) Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob Change Biol 21:2624–2633

    Article  Google Scholar 

  • Kwon MY, Woo SY (2016) Plants’ responses to drought and shade environments. Afr J Biotechnol 15:29–31

    Article  Google Scholar 

  • Lee B, Nam G, Yun J, Cho GY, Lee JS, Kim J, Park TS, Kim K, Oh K (2010) Biological indicators to monitor responses against climate change in Korea. Korean J Plant Taxon 40:202–207

    Google Scholar 

  • Lepeduš H, Begović L, MlinarIć S, Šimić D, Štolfa I, Parađiković N, Užarević Z, Jurković V, Cesar V (2011) Physiology and biochemistry of leaf bleaching in prematurely aging maple (Acer saccharinum L.) trees. II. Functional and molecular adjustment of PSII. Acta Bot Croat 70:133–146

    Google Scholar 

  • Li L, Zhou Z, Liang J, Lv R (2015) In vivo evaluation of the high-irradiance effects on PSII activity in photosynthetic stems of Hexinia polydichotoma. Photosynthetica 53:621–624

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Ač A, Marek MK, Kalina J, Urban O (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem 45:577–588

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Woo S, Kwon M, Kim Y (2007) Antioxidant enzyme activities and soil properties of healthy and declining Abies koreana (Wils.) in Mt. Halla. J Korean For Soc 96(1):14–20

    Google Scholar 

  • Matsubara S, Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101:18234–18239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89(7):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448

    Article  Google Scholar 

  • Nobel SP (2009) Photochemistry of photosynthesis—other photosynthetic pigments. Physicochemical and environmental plant physiology, 4th edn. Academic Press, Oxford, pp 238–244

    Google Scholar 

  • Oguchi R, Terashima I, Kou J, Chow WS (2011) Operation of dual mechanisms that both lead to photoinactivation of Photosystem II in leaves by visible light. Physiol Plant 142:47–55

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, El Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Pearcy RW, Sims DA (1994) Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above and below ground. Academic Press, San Diego, pp 145–174

    Chapter  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35:15–44

    Article  CAS  Google Scholar 

  • Rathod D, Brestic M, Shao H (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. African J Microbiol Res 5:4197–4206

    Article  CAS  Google Scholar 

  • Rodriguez-Dominguez CM, Buckley TN, Egea G, Cires A, Hernandez-Santana V, Martorell S, Diaz-Espejo A (2016) Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Plant Cell Environ 39:2014–2026

    Article  CAS  PubMed  Google Scholar 

  • Sancho-Knapik D, Peguero-Pina JJ, Flexas J, Herbette S, Cochard H, Niinemets Ü, Gil-Pelegrín E (2014) Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer (Abies pinsapo Boiss.). Tree Physiol 34:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Santabarbara S, Bordignon E, Jennings RC, Carbonera D (2002) Chlorophyll triplet states associated with photosystem II of thylakoids. Biochemistry 41(25):8184–8194

    Article  CAS  PubMed  Google Scholar 

  • Sarijeva G, Knapp M, Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol 164:950–955

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta Bioenerg 1706:250–261

    Article  CAS  Google Scholar 

  • Schrader JA, Graves WR, Rice SA, Gibson JP (2006) Difference in shade tolerance help explain varying success of two synpatric Alnus L. species. Int J Plant Sci 5:979–989

    Article  Google Scholar 

  • Shao R, Wang K, Shangguan Z (2010) Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. J Plant Physiol 167:472–479

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Paritsis J, Veblen TT, Chapman TB (2015) Permanent forest plots show accelerating tree mortality in subalpine forests of the Colorado Front Range from 1982 to 2013. For Ecol Manag 341:8–17

    Article  Google Scholar 

  • Stirbet A (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

  • Terashima I, Handa YT, Tholen D, Niinemets Ű (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155(1):108–116

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Niinemets U (2006) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936

    Article  Google Scholar 

  • Valladares F, Laanisto L, Niinemets Ü, Zavala MA (2016) Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecol Diver 9:237–251

    Article  Google Scholar 

  • van Rensburg L, Krüger GH, Eggenberg P, Strasser RJ (1996) Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? S Afr J Bot 62(6):337–341

    Article  Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14(4):200–205

    Article  CAS  PubMed  Google Scholar 

  • Vogelmann TC, Gorton HL (2014) Leaf: light capture in the photosynthetic organ. The structural basis of biological energy generation. Springer, Dordrecht, pp 363–377

    Book  Google Scholar 

  • von Caemmerer S, Farquhar G (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wagner A, McGraw JB (2013) Sunfleck effects on physiology, growth, and local demography of American ginseng (Panax quinquefolius L.). Forest Ecol Manag 291:220–227

    Article  Google Scholar 

  • Wang Z, Chen L, Ai J, Qin H, Liu Y, Xu P, Jiao Z, Zhao Y, Zhang Q (2012) Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). Photosynthetica 50:189–196

    Article  CAS  Google Scholar 

  • Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research. Advances in agricultural biotechnology, vol 2. Springer, Dordrecht, pp 9–12

  • Woo SY, Lim J, Lee DK (2008) Effects of temperature on photosynthetic rates in Korean fir (Abies koreana) between healthy and dieback population. J Integr Plant Biol 50:190–193

    Article  CAS  PubMed  Google Scholar 

  • Wyka T, Robakowski P, Żytowiak R (2008) Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynth Res 95:87–99

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki JY, Suzuki T, Maruta E, Kamimura Y (2005) The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima L. and Ulva pertusa L., in relation to the light environment of their natural habitat. J Exp Bot 416:1517–1523

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the National Institute of Forest Science (Project FE0100-2017-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Hee Kim.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11284-018-1589-x.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Je, S.M., Kim, S.H. & Woo, S.Y. Responses of the photosynthetic apparatus of Abies koreana to drought under different light conditions. Ecol Res 33, 413–423 (2018). https://doi.org/10.1007/s11284-018-1561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-018-1561-9

Keywords

Navigation