Ecological Research

, Volume 32, Issue 6, pp 951–959 | Cite as

Are food-deceptive orchid species really functionally specialized for pollinators?

  • Edy Fantinato
  • Silvia Del Vecchio
  • Mattia Baltieri
  • Beatrice Fabris
  • Gabriella Buffa
Original Article


Food-deceptive orchid species have traditionally been considered pollination specialized to bees or butterflies. However, it is unclear to which concept of specialization this assumption is related; if to that of phenotypic specialization or of functional specialization. The main aim of this work was to verify if pollinators of five widespread food-deceptive orchid species (Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase, Anacamptis pyramidalis (L.) Rich., Himantoglossum adriaticum H. Baumann, Orchis purpurea Huds. and Orchis simia Lam.) predicted from the phenotypic point of view matched with the observed ones. We addressed the question by defining target orchids phenotypic specialization on the basis of their floral traits, and we compared the expected guilds of pollinators with the observed ones. Target orchid pollinators were collected by conducting a meta-analysis of the available literature and adding unpublished field observations, carried out in temperate dry grasslands in NE Italy. Pollinator species were subsequently grouped into guilds and differences in the guild spectra among orchid species grouped according to their phenotype were tested. In contradiction to expectations derived from the phenotypic point of view, food-deceptive orchid species were found to be highly functionally generalized for pollinators, and no differences in the pollinator guild spectra could be revealed among orchid groups. Our results may lead to reconsider food-deceptive orchid pollination ecology by revaluating the traditional equation orchid-pollination specialization.


Dry grasslands Food-deceptive orchids Functional specialization Pollination Specialization trade-offs 

Supplementary material

11284_2017_1501_MOESM1_ESM.pdf (136 kb)
Supplementary material 1 (PDF 135 kb)


  1. Ackerman JD (1986) Mechanisms and evolution of food deceptive pollination system in orchids. Lindleyana 1:108–113Google Scholar
  2. Aigner PA (2001) Optimality modeling and fitness trade-offs: when should plants become pollinator specialists? Oikos 95:177–184CrossRefGoogle Scholar
  3. Aigner PA (2006) The evolution of specialized floral phenotypes in a fine- grained pollination environment. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago, Chicago, pp 23–46Google Scholar
  4. Anderson B, Johnson SD, Carbutt C (2005) Exploitation of a specialized mutualism by a deceptive orchid. Am J Bot 92:1342–1349CrossRefPubMedGoogle Scholar
  5. Armbruster WS, Fenster CB, Dudash MR (2000) Pollination “principles” revisited: specialization, pollination syndromes, and the evolution of flowers. Det Norske Videnskapsakademia. I. Matematisk Naturvidenskapelige Klasse Skrifter Ny Serie 39:139–148Google Scholar
  6. Barrios B, Pena SR, Salas A, Koptur S (2016) Butterflies visit more frequently, but bees are better pollinators: the importance of mouthpart dimensions in effective pollen removal and deposition. AoB Plants 8:plw001CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baskin CC, Baskin JM (2014) Seeds: ecology biogeography and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  8. Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K (2002) Orchid conservation and mycorrhizal associations. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in plant conservation and biodiversity. Kluwer Academic Publishers, Dordrecht, pp 195–226Google Scholar
  9. Biella P, Ollerton J, Barcella M, Assini S (2017) Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies? Community Ecol 18:1–10CrossRefGoogle Scholar
  10. Biró É, Bódis J, Nagy T, Tökölyi J, Molnár VA (2015) Honeybee (Apis mellifera) mediated increased reproductive success of a rare deceptive orchid. Appl Ecol Env Res 13:181–192Google Scholar
  11. Braunschmid H, Mükisch B, Rupp T, Schläffler I, Zito P, Birtele D, Dötterl S (2017) Interpopulation variation in pollinators and floral scent of the lady’s-slipper orchid Cypripedium calceolus L. Arthropod Plant Interact 11:1–17CrossRefGoogle Scholar
  12. Buffa G, Villani M (2012) Are the ancient forests of the Eastern Po Plain large enough for a long term conservation of herbaceous nemoral species? Pl Biosyst 146:970–984CrossRefGoogle Scholar
  13. Buffa G, Carpanè B, Casarotto N, Da Pozzo M, Filesi L, Lasen C, Marcucci R, Masin R, Prosser F, Tasinazzo S, Villani M, Zanatta K (2016) Lista rossa regionale delle piante vascolari. Regione Veneto. Venezia, Regione del VenetoGoogle Scholar
  14. Claessens J, Kleynen J (2011) The flower of the European orchid: form and function. Claessens & Kleynen, GeuelleGoogle Scholar
  15. Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494CrossRefPubMedGoogle Scholar
  16. Cozzolino S, Schiestl FP, Müller A, De Castro O, Nardella AM, Widmer A (2005) Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers? Proc Biol Sci 272:1271–1278CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dafni A (1983) Pollination of Orchis caspia—a nectarless plant species which deceives the pollinators of nectariferous species from other plant families. J Ecol 71:464–474CrossRefGoogle Scholar
  18. Dante SK, Schamp BS, Aarssen LW (2013) Evidence of deterministic assembly according to flowering time in an old-field plant community. Funct Ecol 27:555–564CrossRefGoogle Scholar
  19. Darwin C (1885) On the various contrivances by which orchids are fertilised by insects, 2nd edn. John Murray, LondonGoogle Scholar
  20. Delpino F (1868–1875) Ulteriori osservazioni sulla dicogamia nel regno vegetale. Atti Soc Ital Sc Nat Milano, Vols. 1 and 2Google Scholar
  21. Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242CrossRefPubMedGoogle Scholar
  22. EEC (1992) Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora. Official Journal of the EuropeanCommunities No L206 of 22 July 1992Google Scholar
  23. EEC (2013) Interpretation Manual of European Union Habitats—EUR28. European Commission DG Environment, Nature ENV B.3Google Scholar
  24. Fægri K, Van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon, OxfordGoogle Scholar
  25. Fang Q, Huang SQ (2012) A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94:1176–1185CrossRefGoogle Scholar
  26. Fantinato E, Giovanetti M, Del Vecchio S, Buffa G (2016a) Altitudinal patterns of floral morphologies in dry calcareous grasslands. Plant Sociol 53:83–90Google Scholar
  27. Fantinato E, Del Vecchio S, Slaviero A, Conti L, Acosta ATR, Buffa G (2016b) Does flowering synchrony contribute to the sustainment of dry grassland biodiversity? Flora 222:96–103CrossRefGoogle Scholar
  28. Fenster CB, Armbruster WS, Wilson P et al (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  29. Fontaine C, Dajoz I, Meriguet J, Loreau M, Dudash MR, Thomson JD (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:e1CrossRefPubMedGoogle Scholar
  30. Galizia CG, Kunze J, Gumbert A, Borg-Karlson AK, Sachse S, Markl C et al (2005) Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav Ecol 16:159–168CrossRefGoogle Scholar
  31. Gómez JM, Zamora R (2006) Ecological factors that promote the evolution of generalization in pollination systems. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago, London, pp 145–166Google Scholar
  32. Goulson D, Hanley ME, Darvill B, Ellis JS, Knight ME (2005) Causes of rarity in bumblebees. Biol Conserv 122:1–8CrossRefGoogle Scholar
  33. Gumbert A, Kunze J (2001) Colour similarity to rewarding model affects pollination in a food deceptive orchid, Orchis boryi. Biol J Linn Soc 72:419–433CrossRefGoogle Scholar
  34. Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. R Soc 266:1711–1716CrossRefGoogle Scholar
  35. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  36. Hurlbert AH, Hosoi SA, Temeles EJ, Ewald PW (1996) Mobility of Impatiens capensis flowers: effect on pollen deposition and hummingbird foraging. Oecologia 105:243–246CrossRefPubMedGoogle Scholar
  37. Ibisch PL, Boegner A, Nieder J, Barthlott W (1996) How diverse are neotropical epiphytes? An analysis based on the catalogue of the flowering plants and gymnosperms of Peru. Ecotropica 2:13–28Google Scholar
  38. Inda LA, Pimentel M, Chase MW (2012) Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: Inferences regarding timing of diversification and evolution of pollination syndromes. Ann Bot 110:71–90CrossRefPubMedPubMedCentralGoogle Scholar
  39. IUCN (1999) IUCN guidelines for the prevention of biodiversity loss due to biological invasion. Species 31:28–42Google Scholar
  40. IUCN (2013) Guidelines for using the IUCN red list categories and criteria. Version 10. Prepared by the standards and petitions subcommittee. IUCN, Gland and CambridgeGoogle Scholar
  41. Janssen J, Rodwell J, Criado MG, Gubbay S, Arts G (2016) European Red List of Habitats. European UnionGoogle Scholar
  42. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235CrossRefPubMedGoogle Scholar
  43. Jersáková J, Spaethe J, Streinzer M et al (2016) Does Traunsteinera globosa (the globe orchid) dupe its pollinators through generalized food deception or mimicry? Bot J Linn Soc 180:269–294CrossRefGoogle Scholar
  44. Johnson SD (1994) Evidence for Batesian mimicry in a butterfly-pollinated orchid. Biol J Linn Soc 53:91–104CrossRefGoogle Scholar
  45. Johnson S, Peter C, Nilsson L, Ågren J (2003) Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:2919–2927CrossRefGoogle Scholar
  46. Kaltenrieder P, Procacci G, Vannière B, Tinner W (2010) Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Lateglacial and Holocene sedimentary series from Lago della Costa (northeastern Italy). Holocene 20:679–695CrossRefGoogle Scholar
  47. Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, BoulderGoogle Scholar
  48. Klotz S, Kühn I, Durka W (2002) BIOLFOR—Eine datenbank mit biologischökologishen merkmalen zur flora von Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, BonnGoogle Scholar
  49. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Scientific, AmsterdamGoogle Scholar
  50. Lind H, Franzén M, Pettersson B, Anders Nilsson L (2007) Metapopulation pollination in the deceptive orchid Anacamptis pyramidalis. Nord J Bot 25:176–182CrossRefGoogle Scholar
  51. Mayfield M (2001) Exploring the “most effective pollinator principle” with complex flowers: bumblebees and Ipomopsis aggregata. Ann Bot 88:591–596CrossRefGoogle Scholar
  52. Müller H (1873) Die Befruchtung der Blumen durch Insekten und die gegenseitigen Anpassungen beider. Ein Beitrag zur Erkenntniss des ursächlichen Zusammenhanges in der organischen Natur. Wilhelm Engelmann, LeipzigGoogle Scholar
  53. Neiland MRM, Wilcock CC (1995) Maximisation of reproductive success by European Orchidaceae under conditions of infrequent pollination. Protoplasma 187:39–48CrossRefGoogle Scholar
  54. Nilsson LA (1980) The pollination ecology of Dactylorhiza sambucina (Orchidaceae). Bot Not 133:367–385Google Scholar
  55. Nilsson L, Rabakonandrianina E, Pettersson B (1992) Exact tracking of pollen transfer and mating in plants. Nature 360:666–668CrossRefGoogle Scholar
  56. O’Connell LM, Johnston MO (1998) Male and female pollination success in a deceptive orchid, a selection study. Ecology 79:1246–1260CrossRefGoogle Scholar
  57. Ollerton J (1999) The evolution of pollinator—plant relationships within the arthropods. In: Melic A (ed) Evolution and phylogeny of the arthropoda. Entomology Society of Aragon, Zaragoza, pp 741–758Google Scholar
  58. Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:1–12CrossRefGoogle Scholar
  59. Ollerton J, Alarcón R, Waser NM et al (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480CrossRefPubMedPubMedCentralGoogle Scholar
  60. Otero JT, Ackerman JD, Bayman P (2004) Differences in mycorrhizal preferences between two tropical orchids. Mol Ecol 13:2393–2404CrossRefPubMedGoogle Scholar
  61. Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell, Oxford, pp 157–184Google Scholar
  62. Petterson B, Nilsson AL (1993) Floral variation and deceit pollination in Polystachya rosea (Orchidaceae) on an inselberg in Madagascar. Opera Bot 121:237–245Google Scholar
  63. Pierce S, Belotti J (2011) The conservation of terrestrial orchids from the Alps to the Po plain of Lombardy, Albino (BG) and Galbiate (LC), Italy. Parco Orobie Bergamasche, CFA Regione LombardiaGoogle Scholar
  64. Pierce S, Negreiros D, Cerabolini BEL, Kattge J, Díaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom PM, Frenette-Dussault C, Weiher E, Pinho BX, Cornelissen JHC, Grime JP, Thompson K, Hunt R, Wilson PJ, Buffa G, Nyakunga OC, Reich PB, Caccianiga M, Mangili F, Ceriani RM, Luzzaro A, Brusa G, Siefert A, Barbosa NPU, Chapin FS, Cornwell WK, Fang JY, Fernandes GW, Garnier E, Le Stradic S, Peñuelas J, Melo FPL, Slaviero A, Tabarelli M, Tampucci D (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct Ecol 31:444–457CrossRefGoogle Scholar
  65. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc B Biol Sci 267:1947–1952CrossRefGoogle Scholar
  66. Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163CrossRefGoogle Scholar
  67. Rasmussen HN, Whigham DF (2002) Pheonology of rootsand mycorrhiza in five orchid species differing inphototropic strategy. New Phytol 154:797–807CrossRefGoogle Scholar
  68. Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S et al (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400CrossRefPubMedGoogle Scholar
  69. Rossi G, Montagnani C, Gargano D, Peruzzi L, Abeli T, Ravera S, Cogoni A, Fenu G, Magrini S, Gennai M, Foggi B, Wagensommer RP, Venturella G, Blasi C, Raimondo FM, Orsenigo S (2013) Lista Rossa della Flora Italiana. Policy Species e altre specie minacciate Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare. StamperiaRomana, RomaGoogle Scholar
  70. Sburlino G, Buffa G, Filesi L, Gamper U (2008) Phytocoenotic originality of the N-Adriatic coastal sand dunes (Northern Italy) in the European context: the Stipa veneta-rich communities. Plant Biosyst 142:533–539CrossRefGoogle Scholar
  71. Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264CrossRefPubMedGoogle Scholar
  72. Schiestl FP (2012) Animal pollination and speciation in plants: general mechanisms and examples from the orchids. In: Patiny S (ed) Evolution of plant– pollinator relationships. Cambridge University, New York, pp 263–278Google Scholar
  73. Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438CrossRefPubMedGoogle Scholar
  74. Scopece G, Musacchio A, Widmer A, Cozzolino S (2007) Patterns of reproductive isolation in Mediterranean deceptive orchids. Evol 61:2623–2642CrossRefGoogle Scholar
  75. Selosse MA, Weiß M, Jany JL, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with achlorophyllous Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree Ectomycorrhizae. Mol Ecol 11:1831–1844CrossRefPubMedGoogle Scholar
  76. Slaviero A, Del Vecchio S, Pierce S, Fantinato E, Buffa G (2016) Plant community attributes affect dry grassland orchid establishment. Plant Ecol 217:1533–1543CrossRefGoogle Scholar
  77. Souza CV, Nepi M, Machado SR, Guimarães E (2017) Floral biology, nectar secretion pattern and fruit set of a threatened Bignoniaceae tree from Brazilian tropical forest. Flora 227:46–55CrossRefGoogle Scholar
  78. Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu Rev Ecol Syst 1:307–326CrossRefGoogle Scholar
  79. Strauss SY, Armbruster WS (1997) Linking herbivory and pollination—new perspectives on plant and animal ecology and evolution. Ecol 78:1617–1618Google Scholar
  80. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multi-species plant–animal interactions. Annu Rev Ecol Syst 35:435–466CrossRefGoogle Scholar
  81. Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556CrossRefPubMedPubMedCentralGoogle Scholar
  82. Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialisation in the orchid mycorrhizal interaction leads to rarity in the endangered terrestrial orchid Caladenia huegleii. Mol Ecol 19:3226–3242CrossRefPubMedGoogle Scholar
  83. Tremblay RL (1992) Trends in pollination biology of the Orchidaceae. Evolution and systematics. Can J Bot 70:642–650CrossRefGoogle Scholar
  84. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54CrossRefGoogle Scholar
  85. Tripp EA, Manos PS (2008) Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae). Evol 62:1712–1736CrossRefGoogle Scholar
  86. Vamosi JC, Armbruster WS, Renner SS (2014) Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc Biol Sci 281:19737–19741CrossRefGoogle Scholar
  87. Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392CrossRefGoogle Scholar
  88. Waser NM (1998) Pollination, angiosperm speciation, and the nature of species boundaries. Oikos 82:198–201CrossRefGoogle Scholar
  89. Willmer P (2011) Pollination and floral ecology. University Press, PrincetonCrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Informatics and StatisticsCa’ Foscari University of VeniceVeniceItaly

Personalised recommendations