Skip to main content
Log in

Species diversity of herbivorous insects: a brief review to bridge the gap between theories focusing on the generation and maintenance of diversity

  • Special Feature: Original Article
  • Filling the gaps
  • Published:
Ecological Research

Abstract

Herbivorous insects are remarkably species-diverse, and the cause of such diversity remains a classical issue in the fields of ecology and evolution. The traditional explanation for the huge diversity of such insects is that repeated dietary changes over evolutionary time provided opportunities for speciation, thereby enhancing the diversification rate. A different view suggests that herbivore diversity became saturated over time, with factors affecting the points of dynamic equilibrium of species diversity within each lineage (and thus associated with maintenance of species diversity) being the determinants of the diversity evident today. Thus, both generation and maintenance processes, and their relative importance, are critical for understanding the diversity of herbivorous insects. Furthermore, the neutral theory of biodiversity and biogeography has recently gained attention as an alternative explanation for the generation and maintenance of diversity, as opposed to adaptive processes centred around host specificity. However, these possible routes toward herbivore diversity have rarely been evaluated in parallel, and the work of various groups has become both segmentalised and complicated, compromising any comprehensive understanding of the issue. Thus, in the present paper, I briefly review our knowledge of herbivore diversity and the major relevant studies. The aim was to share knowledge, creating a common starting point from which future discussions among researchers may be generated. It may be that no single approach can resolve the many remaining questions on herbivore diversity. However, an improved understanding of such diversity can be achieved by combining knowledge gained in studies of both the generation and maintenance of diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augustyn WJ, Anderson B, Ellis AG (2016) Experimental evidence for fundamental, and not realized, niche partitioning in a plant–herbivore community interaction network. J Anim Ecol 85(4):994–1003

    Article  PubMed  Google Scholar 

  • Benson WW (1978) Resource partitioning in passion vine butterflies. Evolution 32:493–518

    Article  PubMed  Google Scholar 

  • Bultman TL, Faeth SH (1985) Patterns of intra- and interspecific association in leaf-mining insects on three oak host species. Ecol Entomol 10:121–129

    Article  Google Scholar 

  • Connell JH (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131–138

    Article  Google Scholar 

  • Cornell HV (2013) Is regional species diversity bounded or unbounded? Biol Rev 88:140–165

    Article  PubMed  Google Scholar 

  • Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1–12

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Farrell BDD (1998) “Inordinate fondness” explained: why are there so many beetles? Science 281:555–559

    Article  CAS  PubMed  Google Scholar 

  • Feder JL, Chilcote CA, Bush GL (1988) Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature 336:61–64

    Article  Google Scholar 

  • Filchak KE, Roethele JB, Feder JL (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407:739–742

    Article  CAS  PubMed  Google Scholar 

  • Forbes AA, Devine SN, Hippee AC, Tvedte ES, Ward AK, Widmayer HA, Wilson CJ (2017) Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71:1126–1137

    Article  PubMed  Google Scholar 

  • Fordyce JA (2010) Host shifts and evolutionary radiations of butterflies. Proc R Soc Lond B 277:3735–3743

    Article  Google Scholar 

  • Forister ML, Jenkins SH (2017) A neutral model for the evolution of diet breadth. Am Nat 190:40–54

    Article  Google Scholar 

  • Forister ML, Novotny V, Panorskae AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahnera JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lilln J, Marquis RJ, Miller SE, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stireman JO, Villamarín-Cortezu S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyera LA (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci 106:18054–18061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gompert Z, Jahner JP, Scholl CF, Wilson JS, Lucas LK, Soria-Carrasco V, Fordyce JA, Nice CC, Buerkle CA, Forister ML (2015) The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol Ecol 24:2777–2793

    Article  PubMed  Google Scholar 

  • Gratton C, Welter SC (1999) Does “enemy-free space” exist? Experimental host shifts of an herbivorous fly. Ecology 80:773–785

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Hamm CA, Fordyce JA (2015) Patterns of host plant utilization and diversification in the brush-footed butterflies. Evolution 69:589–601

    Article  PubMed  Google Scholar 

  • Hardy NB (2017) Do plant-eating insect lineages pass through phases of host-use generalism during speciation and host switching? Phylogenetic evidence. Evolution 71:2100–2109

    Article  PubMed  Google Scholar 

  • Hardy NB, Otto SP (2014) Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc R Soc B 281:20132960

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy NB, Peterson DA, Normark BB (2016) Nonadaptive radiation: pervasive diet specialization by drift in scale insects? Evolution 70:2421–2428

    Article  PubMed  Google Scholar 

  • Harmon LJ, Harrison S (2015) Species diversity is dynamic and unbounded at local and continental scales. Am Nat 185:584–593

    Article  PubMed  Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  CAS  PubMed  Google Scholar 

  • Hembry DH, Yoder JB, Goodman KR (2014) Coevolution and the diversification of life. Am Nat 184:425–438

    Article  PubMed  Google Scholar 

  • Hirao T, Murakami M (2008) Quantitative food webs of lepidopteran leafminers and their parasitoids in a Japanese deciduous forest. Ecol Res 23:159–168

    Article  Google Scholar 

  • Hirao T, Murakami M, Kubota Y (2013) Species abundance distributions of moth and beetle assemblages in a cool temperate deciduous forest. Insect Conserv Divers 6:494–501

    Article  Google Scholar 

  • Holt D (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 229:197–229

    Article  Google Scholar 

  • Hubbell S (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hubert N, Calcagno V, Etienne RS, Mouquet N (2015) Metacommunity speciation models and their implications for diversification theory. Ecol Lett 18:864–881

    Article  PubMed  Google Scholar 

  • Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916

    Article  CAS  PubMed  Google Scholar 

  • Isaka Y, Sato T (2015) Species richness of sawfly–host plant associations at higher taxonomic levels. Entomol Res 45:294–304

    Article  Google Scholar 

  • Ishii Y, Shimada M (2012) Learning predator promotes coexistence of prey species in host–parasitoid systems. Proc Natl Acad Sci 109:5116–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janz N (2011) Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu Rev Ecol Evol Syst 42:71–89

    Article  Google Scholar 

  • Janz N, Nylin S (2008) The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 29–42

    Google Scholar 

  • Janz N, Nyblom K, Nylin S (2001) Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55:783–796

    Article  CAS  PubMed  Google Scholar 

  • Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jousselin E, Cruaud A, Genson G, Chevenet F, Foottit RG, Cœur d’acier A (2013) Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara. Front Zool 10:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaartinen R, Roslin T (2013) Apparent competition leaves no detectable imprint on patterns of community composition: observations from a natural experiment. Ecol Entomol 38:522–530

    Article  Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994

    Article  PubMed  Google Scholar 

  • Kohyama TI, Matsumoto K, Katakura H (2012) Geographic variation of host use in the leaf beetle Agelasa nigriceps suggests host range expansion. Entomol Exp Appl 142:165–174

    Article  Google Scholar 

  • Kozubowski TJ, Panorska AK, Forister ML (2015) A discrete truncated Pareto distribution. Stat Methodol 26:135–150

    Article  Google Scholar 

  • Kubota Y, Kusumoto B, Shiono T, Ulrich W, Jabot F (2016) Non-neutrality in forest communities: evolutionary and ecological determinants of tree species abundance distributions. Oikos 125:237–244

    Article  Google Scholar 

  • Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375

    Article  CAS  PubMed  Google Scholar 

  • Lawton JH, Strong DR Jr (1981) Community patterns and competition in folivorous insects. Am Nat 118:317–338

    Article  Google Scholar 

  • Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-P, Cook DH, Gullan PJ, Cook LG (2015) Does host-plant diversity explain species richness in insects? A test using Coccidae (Hemiptera). Ecol Entomol 40:299–306

    Article  Google Scholar 

  • Marques JF, Wang HL, Svensson GP, Frago E, Anderbrant O (2014) Genetic divergence and evidence for sympatric host-races in the highly polyphagous brown tail moth, Euproctis chrysorrhoea (Lepidoptera: Erebidae). Evol Ecol 28:829–848

    Article  Google Scholar 

  • Mateo RG, Mokany K, Guisan A (2017) Biodiversity models: what if unsaturation is the rule? Trends Ecol Evol 32:556–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi KW, Katakura H (2009) Contribution of multiple isolating barriers to reproductive isolation between a pair of phytophagous ladybird beetles. Evolution 63:2563–2580

    Article  PubMed  Google Scholar 

  • Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomol Exp Appl 134:1–27

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, London

    Book  Google Scholar 

  • McPeek MA (2008) The ecological dynamics of clade diversification and community assembly. Am Nat 172:270–284

    Article  Google Scholar 

  • McPeek MA, Brown JM (2007) Clade age and not diversification rate explains species richness among animal taxa. Am Nat 169:97–106

    Article  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  PubMed  Google Scholar 

  • Missa O, Dytham C, Morlon H (2016) Understanding how biodiversity unfolds through time under neutral theory. Philos Trans R Soc Lond B 371:20150226

    Article  Google Scholar 

  • Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128

    Article  Google Scholar 

  • Moen D, Morlon H (2014) Why does diversification slow down? Trends Ecol Evol 29:190–197

    Article  PubMed  Google Scholar 

  • Nakadai R, Kawakita A (2016) Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer). Ecol Evol 6:4958–4970

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakadai R, Kawakita A (2017) Patterns of temporal and enemy niche use by a community of leaf cone moths (Caloptilia) coexisting on maples (Acer) as revealed by metabarcoding. Mol Ecol 26:3309–3319

    Article  PubMed  Google Scholar 

  • Nakadai R, Murakami M (2015) Patterns of host utilisation by herbivore assemblages of the genus Caloptilia (Lepidoptera; Gracillariidae) on congeneric maple tree (Acer) species. Ecol Entomol 40:14–21

    Article  Google Scholar 

  • Nakadai R, Hashimoto K, Iwasaki T, Sato Y (2017) Niche filtering, not interspecific resource competition, explains the geographical co-occurrence of butterfly species. bioRxiv. doi:10.1101/132530

    Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, New York

    Book  Google Scholar 

  • Nosil P, Crespi BJ, Sandoval CP (2002) Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:440–443

    Article  CAS  PubMed  Google Scholar 

  • Nylin S, Slove J, Janz N (2014) Host plant utilization, host range oscillations and diversification in nymphalid butterflies: a phylogenetic investigation. Evolution 68:105–124

    Article  PubMed  Google Scholar 

  • Nyman T (2010) To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant feeding insects. Biol Rev 85:393–411

    Article  PubMed  Google Scholar 

  • Nyman T, Vikberg V, Smith DR, Boevé J-L (2010) How common is ecological speciation in plant-feeding insects? A “Higher” Nematinae perspective. BMC Evol Biol 10:266

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyman T, Leppänen SA, Várkonyi G, Shaw MR, Koivisto R, Barstad TE, Vikberg V, Roininen H (2015) Determinants of parasitoid communities of willow-galling sawflies: habitat overrides physiology, host plant and space. Mol Ecol 24:5059–5074

    Article  PubMed  Google Scholar 

  • Ohshima I (2012) Genetic mechanisms preventing the fusion of ecotypes even in the face of gene flow. Sci Rep 2:506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillimore AB, Price TD (2008) Density-dependent cladogenesis in birds. PLoS Biol 6:e71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pigot AL, Phillimore AB, Owens IPF, Orme CDL (2010) The shape and temporal dynamics of phylogenetic trees arising from geographic speciation. Syst Biol 59:660–673

    Article  PubMed  Google Scholar 

  • Rabosky DL (2009a) Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett 12:735–743

    Article  PubMed  Google Scholar 

  • Rabosky DL (2009b) Ecological limits on clade diversification in higher taxa. Am Nat 173:662–674

    Article  PubMed  Google Scholar 

  • Rabosky DL (2013) Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu Rev Ecol Evol Syst 44:481–502

    Article  Google Scholar 

  • Rabosky DL, Hurlbert AH (2015) Species richness at continental scales is dominated by ecological limits. Am Nat 185:572–583

    Article  PubMed  Google Scholar 

  • Rainford JL, Mayhew PJ (2015) Diet evolution and clade richness in Hexapoda: a phylogenetic study of higher taxa. Am Nat 186:777–791

    Article  PubMed  Google Scholar 

  • Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ (2014) Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One 9:e109085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rathcke BJ (1976) Competition and coexistence with a guild of herbivorous insects. Ecology 57:76–87

    Article  Google Scholar 

  • Rosenblum EB, Sarver BA, Brown JW, Des Roches S, Hardwick KM, Hether TD, Eastman JM, Pennell MW, Harmon LJ (2012) Goldilocks meets santa rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol Biol 39:255–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rosindell J, Hubbell SP, He F, Harmon LJ, Etienne RS (2012) The case for ecological neutral theory. Trends Ecol Evol 27:203–208

    Article  PubMed  Google Scholar 

  • Ross HH (1957) Principles of natural coexistence indicated by leafhopper populations. Evolution 11:113–129

    Article  Google Scholar 

  • Rundell RJ, Price TD (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol 24:394–399

    Article  PubMed  Google Scholar 

  • Sato H (1991) Differential resource utilization and co-occurrence of leaf miners on oak (Quercus dentata). Ecol Entomol 16:105–113

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New York

    Google Scholar 

  • Schoener TW (1983) Field experiments on interspecific competition. Am Nat 122:240–285

    Article  Google Scholar 

  • Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81:174–184

    Article  PubMed  Google Scholar 

  • Singer MS, Stireman JO III (2005) The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol Lett 8:1247–1255

    Article  Google Scholar 

  • Singer MS, Lichter-Marck IH, Farkas TE, Aaron E, Whitney KD, Mooney KA (2014) Herbivore diet breadth mediates the cascading effects of carnivores in food webs. Proc Natl Acad Sci 111:9521–9626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley SM (1979) Macroevolution, pattern and process. W. H. Freeman, San Francisco

    Google Scholar 

  • Strong DR (1982) Harmonious coexistence of hispine beetles on heliconia in experimental and natural communities. Ecology 63:1039–1049

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood SR (1984) Insects on plants. Community patterns and mechanisms. Blackwell Scientific Publicatons, Oxford

    Google Scholar 

  • Suzuki TM, Chiba S (2016) Dynamics of evolutionary radiation under ecological neutrality. J Theor Biol 406:1–7

    Article  PubMed  Google Scholar 

  • Tack AJM, Ovaskainen O, Harrison PJ, Roslin T (2009) Competition as a structuring force in leaf miner communities. Oikos 118:809–818

    Article  Google Scholar 

  • Ueckert DN, Hansen RM (1971) Dietary overlap of grasshoppers on sandhill rangeland in northeastern Colorado. Oecologia 8:276–295

    Article  CAS  PubMed  Google Scholar 

  • Ulrich W, Kusumoto B, Shiono T, Kubota Y (2015) Climatic and geographic correlates of global forest tree species–abundance distributions and community evenness. J Veg Sci 27:295–305

    Article  Google Scholar 

  • van Nouhuys S, Hanski I (2005) Metacommunities of butterflies, their host plants, and their parasitoids. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, pp 99–121

    Google Scholar 

  • Vanoverbeke J, Urban MC, Meester LD (2016) Community assembly is a race between immigration and adaptation: eco-evolutionary interactions across spatial scales. Ecography 39:858–870

    Article  Google Scholar 

  • Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AV, Brower AV (2009) Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc Biol Sci 276:4295–4302

    Article  PubMed  PubMed Central  Google Scholar 

  • Waloff N (1979) Partitioning of resources by grassland leafhoppers (Auchenorrhyncha, Homoptera). Ecol Entomol 4:379–385

    Article  Google Scholar 

  • Wang S, Chen A, Fang J, Pacala SW (2013) Speciation rates decline through time in individual-based models of speciation and extinction. Am Nat 182:83–93

    Article  Google Scholar 

  • Weir JT, Hey J (2006) Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution 60:842–855

    Article  PubMed  Google Scholar 

  • Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T (2007) The genetic basis of a plant–insect coevolutionary key innovation. Proc Natl Acad Sci 104:20427–20431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegmann BM, Regier JC, Mitter C (2002) Combined molecular and morphological evidence on the phylogeny of the earliest lepidopteran lineages. Zool Scr 31:67–81

    Article  Google Scholar 

  • Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Biol Rev 86:75–96

    Article  Google Scholar 

  • Wiens JJ, Lapoint RT, Whiteman NK (2015) Herbivory increases diversification across insect clades. Nat Commun 6:1–7

    Article  CAS  Google Scholar 

  • Wilson JS, Forister ML, Dyer LA, O’Connor JM, Burls K, Feldman CR, Jaramillo MA, Miller JS, Rodríguez-Castañeda G, Tepe EJ, Whitfield JB, Young B (2012) Host conservatism, host shifts and diversification across three trophic levels in two neotropical forests. J Evol Biol 25:532–546

    Article  CAS  PubMed  Google Scholar 

  • Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ, Jochimsen D, Oswald BP, Robertson J, Sarver BA, Schenk JJ, Spear SF, Harmon LJ (2010) Ecological opportunity and the origin of adaptive radiations. J Evol Biol 23:1581–1596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank the members of the Center for Ecological Research, Kyoto University, for engaging in useful discussions, especially Dr. Atsushi Kawakita, who gave me much good advice throughout my doctoral program, and the members of the Laboratory of Ecology and Systematics, University of the Ryukyus, for friendly discussions on biodiversity. I also thank the associated editor and two anonymous reviewers for comments that improved the manuscript. The work was supported by a Grant-in-Aid for JSPS Fellows (No. 15J00601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Nakadai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakadai, R. Species diversity of herbivorous insects: a brief review to bridge the gap between theories focusing on the generation and maintenance of diversity. Ecol Res 32, 811–819 (2017). https://doi.org/10.1007/s11284-017-1500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1500-1

Keywords

Navigation