Ecological Research

, Volume 32, Issue 6, pp 921–930 | Cite as

Composition of cladoceran dormant stages in intermittent ponds with different hydroperiod lengths

  • Cristina Stenert
  • Regiane Wüsth
  • Mateus Marques Pires
  • Raquel Fontoura Freiry
  • Daryl Nielsen
  • Leonardo Maltchik
Original Article
  • 142 Downloads

Abstract

Dormancy is an adaptive mechanism found in cladoceran species to tolerate hydrologic fluctuations in temporary habitats. However, the effects of hydroperiod length on invertebrate community structure remain not fully understood. In this study, we conducted an experiment to assess changes in community structure of dormant stages of cladoceran species among ponds with different hydroperiods. Dry sediment samples were collected from intermittent ponds in southern Brazil, posteriorly assigned to three hydroperiod categories (long, medium and short). We tested for differences in the richness and composition of emerging cladoceran species along this hydroperiod gradient. Nine species emerged over the experiment, and cladoceran community structure changed among hydroperiods. Cladoceran richness was higher in medium- than in short- and long-hydroperiod ponds. In addition, the composition of cladoceran species changed significantly between short- and long-hydroperiod ponds. Our results indicated that changes in hydroperiod of intermittent ponds influenced the dormant stages of Cladocera, an important result regarding future predicted changes in hydric regime of freshwater ecosystems due to human-induced climate change. We propose that desiccation-resistant cladoceran species are likely to predominate and that richness of egg banks tends to be higher in ponds that hold water for periods shorter than 1 year.

Keywords

Wetlands Zooplankton Hydric regime Egg banks Resting stages 

Notes

Acknowledgements

We thank Dr. Francisco Diogo Rocha Sousa for collaboration in the identification of cladoceran specimens. Leonardo Maltchik and Cristina Stenert hold CNPq (Brazilian Research Council) research productivity grants. CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education) granted PhD scholarships to Mateus Marques Pires and Raquel Fontoura Freiry.

Compliance with ethical standards

Conflict of interest

We declare that data collection complied with Brazilian current laws (SISBIO n. 36365-2) and that the authors have no conflict of interest.

Supplementary material

11284_2017_1498_MOESM1_ESM.pdf (130 kb)
Supplementary material 1 (PDF 129 kb)

References

  1. Araújo LR, Lopes PM, Santangelo JM, Petry AC, Bozelli RL (2013) Zooplankton resting egg banks in permanent and temporary tropical aquatic systems. Acta Limnol Bras 25:235–245. doi: 10.1590/S2179-975X2013000300004 CrossRefGoogle Scholar
  2. Ávila AC, Boelter T, Dos Santos RM, Stenert C, Würdig NL, Rocha O, Maltchik L (2015) The effects of different rice cultivation systems and ages on resting stages of wetland invertebrates in southern Brazil. Mar Freshw Res 66:276–285. doi: 10.1071/MF14048 CrossRefGoogle Scholar
  3. Batzer DP (2013) The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33:1–15. doi: 10.1007/s13157-012-0360-2 CrossRefGoogle Scholar
  4. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181. doi: 10.1146/annurev.ecolsys.32.081501.114016 CrossRefGoogle Scholar
  5. Bond-Buckup G (2010) Biodiversidade dos Campos de Cima da Serra. Libretos, Porto AlegreGoogle Scholar
  6. Boulton AJ, Lloyd LN (1992) Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. Regul Rivers Res Manag 7:137–151. doi: 10.1002/rrr.3450070203 CrossRefGoogle Scholar
  7. Boven L, Brendonck L (2009) Impact of hydroperiod on seasonal dynamics in temporary pool cladoceran communities. Arch für Hydrobiol 174:147–157. doi: 10.1127/1863-9135/2009/0174-0147 CrossRefGoogle Scholar
  8. Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84CrossRefGoogle Scholar
  9. Clarke KR, Warwick RM (2001) Change in marine communities, an approach to statistical analysis and interpretation. Plymouth: PRIMER-E. http://www.vliz.be/imisdocs/publications/213560.pdf. Accessed 15 June 2016
  10. Duarte LS, Dos-Santos MMG, Hartz SM, Pillar VD (2006) The role of nurse plantson Araucaria forest expansión overgrassland in South Brazil. Austral Ecol 31:520–528. doi: 10.1111/j.1442-9993.2006.01602.x CrossRefGoogle Scholar
  11. Ebert TA, Balko ML (1987) Temporary pools as islands in space and in time: the biota of vernal pools in San Diego, Southern California, USA. Arch für Hydrobiol 110:101–123Google Scholar
  12. Elmoor-Loureiro LMA (1997) Manual de identificação de cladóceros límnicos do Brasil. Universa, BrasíliaGoogle Scholar
  13. Fahd K, Florencio M, Keller C, Serrano L (2007) The effect of the sampling scale on zooplankton community assessment and its implications for the conservation of temporary ponds in south-west Spain. Aquat Conserv Mar Freshw Ecosyst 17:175–193. doi: 10.1002/aqc.781 CrossRefGoogle Scholar
  14. Frisch D, Moreno-Ostos E, Green AJ (2006) Species richness and distribution of copepods and cladocerans and their relation to hydroperiod and other environmental variables in Doñana, south-west Spain. Hydrobiologia 556:327–340. doi: 10.1007/s10750-005-1305-z CrossRefGoogle Scholar
  15. Fryer G (1995) Phylogeny and adaptive radiation within the Anomopoda: a preliminary exploration. Hydrobiologia 307:57–68. doi: 10.1007/978-94-011-0021-2_7 CrossRefGoogle Scholar
  16. Golladay SW, Taylor BW, Palik BJ (1997) Invertebrate communities of forested limesink wetlands in southwest Georgia, USA: habitat use and influence of extended inundation. Wetlands 17:383–393. doi: 10.1007/BF03161428 CrossRefGoogle Scholar
  17. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  18. Hendriks DMD, Van Huissteden J, Dolman AJ, Van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosci Discuss 4:277–316. doi: 10.5194/bg-4-411-2007 CrossRefGoogle Scholar
  19. SPSS (2009) PASW statistics for windows (version 18.0). SPSS Inc, ChicagoGoogle Scholar
  20. Intergovernmental Panel on Climate Change—IPCC (2007) Climate change 2007: synthesis report AR4. International Panel on Climate ChangeGoogle Scholar
  21. Intergovernmental Panel on Climate Change—IPCC (2011) Climate change 2011: synthesis report AR4. International Panel on Climate ChangeGoogle Scholar
  22. Jenkins KM, Boulton AJ (1998) Community dynamics of invertebrates emerging from reflooded lake sediments: flood pulse and aeolian influences. Int J Ecol Environ Sci 24:179–192Google Scholar
  23. Jenkins KM, Boulton AJ (2007) Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrate responses to reduced floodplain inundation. J Appl Ecol 44:823–832. doi: 10.1111/j.1365-2664.2007.01298.x CrossRefGoogle Scholar
  24. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci 106:110–127Google Scholar
  25. Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167. doi: 10.1007/s00027-012-0278-z CrossRefGoogle Scholar
  26. Lopretto EC, Tell G (1995) Ecosistemas de aguas continentales. Ediciones Sur, La PlataGoogle Scholar
  27. Los Ríos-Escalante D, Quinán E, Acevedo P (2014) Inland water microcrustacean assemblages in an altitudinal gradient in Aysen region (46°S, Patagonia Chile). Braz J Biol 74:08–15. doi: 10.1590/1519-6984.08212 CrossRefGoogle Scholar
  28. Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100. doi: 10.1016/j.tree.2003.10.002 CrossRefPubMedGoogle Scholar
  29. Mahoney DL, Mort MA, Taylor BE (1990) Species richness of calanoid copepods, cladocerans and other branchiopods in Carolina bay temporary ponds. Am Midl Nat 123:244–258. doi: 10.2307/2426553 CrossRefGoogle Scholar
  30. Maluf JRT (2000) Nova classificação climática do Estado do Rio Grande do Sul. Revista Brasileira de Agrometeorologia 8:141–150Google Scholar
  31. Marengo JA, Schaeffer R, Zee D, Pinto H (2010) Mudanças climáticas e eventos extremos no Brasil. São Paulo: Fundação Brasileira para o Desenvolvimento Sustentável. http://www.fbds.org.br/cop15/FBDS_MudancasClimaticas.pdf. Accessed 13 April 2016
  32. Nielsen DL, Smith FJ, Hillman TJ, Shiel RJ (2000) Impact of water regime and fish predation on zooplankton resting egg production and emergence. J Plankton Res 22:433–446. doi: 10.1093/plankt/22.3.433 CrossRefGoogle Scholar
  33. Nielsen DL, Podnar K, Watts RJ, Wilson AL (2013) Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708:81–96. doi: 10.1007/s10750-011-0989-5 CrossRefGoogle Scholar
  34. Ning NS, Gawne B, Cook RA, Nielsen DL (2013) Zooplankton dynamics in response to the transition from drought to flooding in four Murray–Darling Basin rivers affected by differing levels of flow regulation. Hydrobiologia 702:45–62. doi: 10.1007/s10750-012-1306-7 CrossRefGoogle Scholar
  35. Oksanen J, Blanchet FG, Friendly M et al (2016) Vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan. Accessed 20 Sept 2016
  36. Ormerod SJ, Rundle SD, Wilkinson SM, Daly GP, Dale KM, Juttner I (1994) Altitudinal trends in the diatoms, bryophytes, macroinvertebrates and fish of a Nepalese river system. Freshw Biol 32:309–322. doi: 10.1111/j.1365-2427.1994.tb01128.x CrossRefGoogle Scholar
  37. Palazzo F, Bonecker CC, Nagae MY (2008) Zooplankton dormancy forms in two environments of the upper Paraná River floodplain (Brazil). Acta Limnol Bras 20:55–62Google Scholar
  38. Panarelli EA, Casanova SMC, Henry R (2008) The role of resting eggs in the recovery of zooplankton community in a marginal lake of the Paranapanema River (São Paulo, Brazil), after a long drought period. Acta Limnol Bras 20:73–88Google Scholar
  39. Pitchford JL, Wu C, Lin LS, Petty JT, Thomas R, Veselka WE, Welsch D, Zegre N, Anderson JT (2012) Climate change effects on hydrology and ecology of wetlands in the mid-Atlantic highlands. Wetlands 32:21–33. doi: 10.1007/57-011-0259-3 CrossRefGoogle Scholar
  40. Rautio M (1998) Community structure of crustacean zooplankton in subarctic ponds: effects of altitude and physical heterogeneity. Ecography 21:327–335. doi: 10.1111/j.1600-0587.1998.tb00570.x CrossRefGoogle Scholar
  41. Reich P, Lake PS (2015) Extreme hydrological events and the ecological restoration of flowing waters. Freshw Biol 60:2639–2652. doi: 10.1111/fwb.12508 CrossRefGoogle Scholar
  42. Santangelo JM (2009) Estrutura do banco de ovos de resistência em sistemas aquáticos continentais e influência da salinidade e da predação na diapausa. PhD dissertation, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJGoogle Scholar
  43. Santangelo JM, Esteves FDA, Manca M, Bozelli RL (2011) Abundance, composition and spatial variation in the egg bank of a tropical zooplankton community. Stud Neotrop Fauna Environ 46:225–232. doi: 10.1080/01650521.2011.632672 CrossRefGoogle Scholar
  44. Serrano L, Fahd K (2005) Zooplankton communities across a hydroperiod gradient of Temporary ponds in the Doñana National Park (sw Spain). Wetlands 25:101–111CrossRefGoogle Scholar
  45. Stenert C, Maltchik L (2007) Influence of area, altitude and hydroperiod on macroinvertebrate communities in southern Brazil wetlands. Mar Freshw Res 58:993–1001CrossRefGoogle Scholar
  46. Stenert C, Bacca RC, Mostardeiro CC, Maltchik L (2008) Environmental predictors of macroinvertebrate communities in coastal wetlands of southern Brazil. Mar Freshw Res 59:540–548. doi: 10.1071/MF07220#sthash.NHshRRK5.dpuf CrossRefGoogle Scholar
  47. Stenert C, Ehlert B, Sousa FD, Esquinatti FM, Batzer D, Maltchik L (2016) Dormant propagule banks of aquatic invertebrates in ponds invaded by exotic pine species in southern Brazil. Mar Freshw Res. doi: 10.1071/MF16067 Google Scholar
  48. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  49. Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13. doi: 10.1007/s10750-006-0285-y CrossRefGoogle Scholar
  50. Vandekerkhove J, Declerck S, Brendonck L, Conde-Porcuna JM, Jeppesen E, De Meester L (2005) Hatching of cladoceran resting eggs: temperature and photoperiod. Freshw Biol 50:96–104CrossRefGoogle Scholar
  51. Ward MN (1998) Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at inter-annual and multi-decadal time scales. J Clim 11:3167–3191. doi: 10.1175/1520-0442(1998)011<3167:dasltp>2.0.co;2 CrossRefGoogle Scholar
  52. Waterkeyn A, Grillas P, Vanschoenwinkel B, Brendonck L (2008) Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshw Biol 53:1808–1822CrossRefGoogle Scholar
  53. Waterkeyn A, Vanschoenwinkel B, Vercampt H, Grillas P, Brendonck L (2011) Long-term effects of salinity and disturbance regime on active and dormant crustacean communities. Limnol Oceanogr 56:1008–1022. doi: 10.4319/lo.2011.56.3.1008 CrossRefGoogle Scholar
  54. Williams DD (1998) The role of dormancy in the evolution and structure of temporary water invertebrate communities. Arch für Hydrobiol 52:109–124Google Scholar
  55. Williams DD (2006) The biology of temporary waters. Oxford University Press, New YorkGoogle Scholar
  56. Zokan M, Drake JM (2015) The effect of hydroperiod and predation on the diversity of temporary pond zooplankton communities. Ecol Evol 5:3066–3074CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  • Cristina Stenert
    • 1
  • Regiane Wüsth
    • 1
  • Mateus Marques Pires
    • 1
  • Raquel Fontoura Freiry
    • 1
  • Daryl Nielsen
    • 2
  • Leonardo Maltchik
    • 1
  1. 1.Laboratory of Ecology and Conservation of Aquatic EcosystemsUNISINOSSão LeopoldoBrazil
  2. 2.The Murray-Darling Freshwater Research CentreCSIRO Land and Water Flagship and La Trobe UniversityWodongaAustralia

Personalised recommendations