Skip to main content
Log in

Reproduction compromises adaptive immunity in a cyprinid fish

  • Original Article
  • Published:
Ecological Research

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Vertebrates differ in their ability to mount an adaptive immune response to novel antigens. Bioenergetic resources available to an organism are finite; investment in reproduction compromises immune function and may therefore affect critical life history trade-offs. We tested whether reproduction impairs the ability to produce an antibody response against a novel antigen in roach (Rutilus rutilus). The antigen approach has rarely been used in fish studies, and the ability to produce an antibody response during reproductive season has never been tested in cyprinid fish before. The fish in an experimental group were injected with a Brucella abortus (BA) antigen, while the fish in a control group were injected with an isotonic saline solution. Blood samples were extracted from all the fish to obtain the total number and proportion of blood cells such as lymphocytes, neutrophils and antioxidant glutathione. The groups were tested during the spawning season and one week after it had ended. The roach were unable to mount an immune response during spawning but produced a robust response after it. We conclude that reproduction is costly in roach, as indicated by the increased concentration of neutrophils in fish injected with BA during spawning, as well as the negative associations between neutrophil counts and glutathione levels. This study demonstrates the potential of BA antigen as a research tool in experimental research on fish ecological immunology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamo SA, Jensen M, Younger M (2001) Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Anim Behav 62:417–425

    Article  Google Scholar 

  • Agranovich I, Scott DE, Terle D, Lee K, Golding B (1999) Down-regulation of Th2 responses by B. abortus, a strong Th1 stimulus, correlates with alterations in the B7.2-CD28 pathway. Infect Immun 67:4418–4426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta 1519:37–48

    Article  Google Scholar 

  • Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O, Sorci G (2007) Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc R Soc B 274:819–825

    Article  CAS  PubMed  Google Scholar 

  • Amat JA, Aguilera E, Visser GH (2007) Energetic and developmental costs of mounting an immune response in greenfinches (Carduelis chloris). Ecol Res 22:282–287

    Article  Google Scholar 

  • Ardia DR (2005) Individual quality mediates trade-offs between reproductive effort and immune function in tree swallows. J Anim Ecol 74:517–524

    Article  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    Article  PubMed  Google Scholar 

  • Boughton RK, Joop G, Armitage SAO (2011) Outdoor immunology: methodological considerations for ecologists. Funct Ecol 25:81–100

    Article  Google Scholar 

  • Briviba K, Watzl B, Nickel K, Kulling S, Bös K, Rechkemmer G, Achim B (2010) A half-marathon and a marathon run induce oxidative DNA damage, reduce antioxidant capacity to protect DNA against damage and modify immune function in hobby runners. Redox Rep 10:325–331

    Article  Google Scholar 

  • Cīrule D, Krama T, Vrublevska J, Rantala M, Krams I (2012) A rapid effect of handling on counts of white blood cells in a wintering passerine bird: a more practical measure of stress? J Ornithol 153:161–166

    Article  Google Scholar 

  • Cook J (1994) The effects of stress, background color and steroid hormones on the lymphocytes of rainbow trout (Oncorhynchus mykiss). PhD Thesis. University of Sheffield, Sheffield

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • Deerenberg C, Arpanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc B 264:1021–1029

    Article  PubMed Central  Google Scholar 

  • Demas GE, Nelson RJ (eds) (2011) Eco-Immunology. Oxford University Press, New York

    Google Scholar 

  • Demas GE, Drazen DL, Nelson RJ (2003) Reductions in total body fat decrease humoral immunity. Proc R Soc B 270:905–911

    Article  PubMed  PubMed Central  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730

    Article  PubMed  Google Scholar 

  • Eisenberg T, Hamann H-P, Kaim U, Schlez K, Seeger H, Schauerte N, Melzer F, Tomaso H, Scholz HC, Koylass MS, Whatmore AM, Zschöcka M (2012) Isolation of potentially novel Brucella spp. from frogs. Appl Environ Microbiol 78:3753–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Tras WF, Tayel AA, Eltholth MM, Guitian JJ (2010) Brucella infection in fresh water fish: evidence for natural infection of Nile catfish, Clarias gariepinus, with Brucella melitensis. Vet Microbiol 141:321–325

    Article  CAS  PubMed  Google Scholar 

  • Folstad I, Karter A (1992) Parasites, bright males, and the immunocompeence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Galván I, Alonso-Alvarez C (2008) An intracellular antioxidant determines the expression of a melanin-based signal in a bird. PLoS One 3:e3335

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia MM, Brooks BW, Stewart RB, Dion W, Trudel JR, Ouwerkerk T (1987) Evaluation of gamma radiation levels for reducing pathogenic bacteria and fungi in animal sewage and laboratory effluents. Can J Vet Res 51:285–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier R, Graham AL (2014) Insights from parasite-specific serological tools in eco-immunology. Integ Comp Biol 54:363–376

    Article  Google Scholar 

  • Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH, Zarnani A-H (2015) Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. Vaccine 33:5532–5538

    Article  CAS  PubMed  Google Scholar 

  • Godfroid J, Nielsen K, Saegerman C (2010) Diagnosis of Brucellosis in livestock and wildlife. Croat Med J 51:296–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowaty PA, Anderson WW, Bluhm CK, Drickamer LC, Kim YK, Moore AJ (2007) The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc Nat Acad Sci USA 104:15023–15027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham AL, Allen JE, Read AF (2005) Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Evol Syst 36:373–397

    Article  Google Scholar 

  • Graham AL, Hayward AD, Watt KA, Pilkington JG, Pemberton JM, Nussey DH (2010) Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330:662–665

    Article  CAS  PubMed  Google Scholar 

  • Graham AL, Shuker DM, Pollitt LC, Auld SKJR, Wilson AJ, Little TJ (2011) Fitness consequences of immune responses: strenghtening the empirical framework for ecoimmunology. Funct Ecol 25:5–17

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Hawkey CM, Dennett TB (1989) Color atlas of comparative veterinary hematology. Iowa State University Press, Ames

    Google Scholar 

  • Hawley DM, Altizer SM (2011) Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct Ecol 25:48–60

    Article  Google Scholar 

  • Hõrak P, Sild E, Soomets U, Sepp T, Kilk K (2010) Oxidative stress and information content of black and yellow plumage coloration: an experiment with greenfinches. J Exp Biol 213:2225–2233

    Article  PubMed  Google Scholar 

  • Hou Y, Suzuki Y, Aida Y (1999) Effects of steroids on the antibody producing activity of lymphocytes in rainbow trout. Fish Sci 65:850–855

    Article  CAS  Google Scholar 

  • Houwen B (2002) Blood film preparation and staining procedures. Lab Hematol 22:1–7

    Google Scholar 

  • Iida T, Takanishi K, Wakabayashi H (1989) Decrease in the bacterial activity of normal serum during the spawning period of rainbow trout. Bull Jpn Soc Sci Fish 55:463–465

    Article  Google Scholar 

  • Isaksson C, Sheldon BC, Uller T (2011) The challenges of integrating oxidative stress into life-history biology. Bioscience 61:194–202

    Article  Google Scholar 

  • Janeway C, Travers P, Walport M, Shlomchik M (2004) Immunobiology. Garland Publishing, New York

    Google Scholar 

  • Johnson KA, Flynn JK, Amend DF (1982) Onset of immunity in salmonid fry vaccinated by direct immersion in Vibrio anguillarum and Yersinia ruckeri bacterins. J Fish Dis 5:197–205

    Article  Google Scholar 

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a metaregression approach. Funct Ecol 23:405–415

    Article  Google Scholar 

  • Kortet R, Taskinen J (2004) Parasitism, condition and number of front head breeding tubercles in roach (Rutilus rutilus L.). Ecol Freshw Fish 13:119–124

    Article  Google Scholar 

  • Kortet R, Taskinen J, Vainikka A (2002) Epizootic cutaneous papillomatosis in roach Rutilus rutilus: sex and size dependence, seasonal occurrence and between population differences. Dis Aquat Organ 52:185–190

    Article  PubMed  Google Scholar 

  • Kortet R, Taskinen J, Sinisalo T, Jokinen I (2003a) Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L. Biol J Linn Soc 78:117–127

    Article  Google Scholar 

  • Kortet R, Vainikka A, Rantala MJ, Jokinen I, Taskinen J (2003b) Sexual ornamentation, androgens and papillomatosis in male roach (Rutilus rutilus). Evol Ecol Res 5:411–419

    Google Scholar 

  • Kortet R, Vainikka A, Rantala MJ, Taskinen J (2004a) Sperm quality, secondary sexual characters and parasitism in roach (Rutilus rutilus). Biol J Linn Soc 81:111–117

    Article  Google Scholar 

  • Kortet R, Vainikka A, Rantala MJ, Myntti J, Taskinen J (2004b) In vitro embryo survival and early viability of larvae in relation to male sexual ornaments and parasite resistance in roach, Rutilus rutilus L. J Evol Biol 17:1337–1344

    Article  PubMed  Google Scholar 

  • Koskivaara M, Valtonen ET, Prost M (1991) Seasonal occurrence of gyrodactylid monogeneans on the roach (Rutilus rutilus) and variations between four lakes of differing water quality in Finland. Aqua Fenn 21:47–55

    Google Scholar 

  • Krama T, Suraka V, Hukkanen M, Rytkönen S, Orell M, Cīrule D, Rantala MJ, Krams I (2013) Physiological condition and blood parasites of breeding great tits: a comparison of core and northernmost populations. J Ornithol 154:1019–1028

    Article  Google Scholar 

  • Krams I, Vrublevska J, Cirule D, Kivleniece I, Krama T, Rantala MJ, Sild E, Hõrak P (2012) Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp Biochem Physiol A Mol Integr Physiol 161:422–428

    Article  CAS  PubMed  Google Scholar 

  • Leshchinsky TV, Klasing KC (2001) Relationship between the level of dietary vitamin E and the immune response of broiler chickens. Poultry Sci 80:1590–1599

    Article  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer, Sunderland MA

    Google Scholar 

  • Mandiki SNM, Henrotte E, Milla S, Douxfils J, Wang N, Rougeot C, Vandecan M, Mélard C, Kestemont P (2011) How physiological status and immune defense are affected by photo-thermal regimes and domestication process in captive Eurasian perch? Indian J Sci Technol 4:298–299

    Google Scholar 

  • Martin LB, Hasselquist D, Wikelski M (2006) Investment in immune defense is linked to pace of life in house sparrows. Oecologia 147:565–575

    Article  PubMed  Google Scholar 

  • Maule AG, Schrock R, Slater C, Fitzpatrick MS, Schreck CB (1996) Immune and endocrine responses of adult chinook salmon during freshwater immigration and sexual maturation. Fish Shellfish Immunol 6:221–223

    Article  Google Scholar 

  • McNamara KB, van Lieshout E, Jones TM, Simmons LW (2013) Age-dependent trade-offs between immunity and male, but not female, reproduction. J Anim Ecol 82:235–244

    Article  PubMed  Google Scholar 

  • Meitern R, Sild E, Lind M-A, Männiste M, Sepp T, Karu U, Hõrak P (2013) Effects of endotoxin and psychological stress on redox physiology, immunity and feather corticosterone in greenfinches. PLoS One 8(6):e67545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  PubMed  PubMed Central  Google Scholar 

  • Muehlenbein MP, Bribiescas RG (2005) Testosterone-mediated immune functions and male life histories. Am J Hum Biol 17:527–558

    Article  PubMed  Google Scholar 

  • Pasnik DJ, Vemulapalli R, Smith SA, Schurig GG (2003) A recombinant vaccine expressing a mammalian Mycobacterium sp. antigen is immunostimulatory but not protective in striped bass. Vet Immunol Immunopathol 95:43–52

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Pickering AD, Christie P (1980) Sexual differences in the incidence and severity of ectoparasitic infestation of the brown trout, Salmo trutta L. J Fish Biol 16:669–683

    Article  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2007) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165

    Article  Google Scholar 

  • Raitaniemi J, Nyberg K, Torvi I (2000) Kalojen iän ja kasvun määritys. Riistan-ja kalatalouden tutkimuslaitos, Helsinki

    Google Scholar 

  • Rajasekaran P, Surendran N, Saleem MN, Sriranganathan N, Schuring GG, Boyle SM (2011) Over-expression of homologous antigens in a leucine auxotroph of Brucella abortus strain RB51 protects mice against a virulent B. suis challenge. Vaccine 29:3106–3110

    Article  CAS  PubMed  Google Scholar 

  • Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria. Proc Natl Acad Sci USA 92:1192–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgeway GJ (1962) Demonstration of blood types in rainbow trout and salmon by isoimmunization. Ann New York Acad Sci 97:111–118

    Article  Google Scholar 

  • Rohlenová K, Šimková A (2010) Are the immunocompetence and the presence of metazoan parasites in cyprinid fish affected by reproductive efforts of cyprinid fish? J Biomed Biotechnol. Article ID 418382

  • Salem SF, Mohsen A (1997) Brucellosis in fish. Vet Med (Praha) 42:5–7

    CAS  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, New York

    Google Scholar 

  • Schreck CB (2010) Stress and fish reproduction: the roles of allostasis and hormesis. Gen Comp Endocrinol 165:549–556

    Article  CAS  PubMed  Google Scholar 

  • Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Introduction. Ecological immunology. Phil Trans R Soc B 364:3–14

    Article  PubMed  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Sild E, Hõrak P (2010) Assessment of oxidative burst in avian whole blood samples: validation and application of a chemiluminescence method based on Pholasin. Behav Ecol Sociobiol 64:2065–2076

    Article  Google Scholar 

  • Šimková A, Jarkovský J, Koubková B, Baruš V, Prokeš M (2005) Associations between fish reproductive cycle and the dynamics of metazoan parasite infection. Parasitol Res 95:65–72

    Article  PubMed  Google Scholar 

  • Skarstein F, Folstad I, Liljedal S (2001) Whether to reproduce or not: immune suppression and cost of parasites during reproduction in the Arctic charr. Can J Zool 79:271–278

    Article  Google Scholar 

  • Slater CH, Schreck CB (1993) Testosterone alters the immune response of chinook salmon, Oncorhynchus tshawytscha. Gen Comp Endocrinol 89:291–298

    Article  CAS  PubMed  Google Scholar 

  • Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101

    Article  CAS  PubMed  Google Scholar 

  • Soto E, Brown N, Gardenfors ZO, Yount S, Revan F, Francis S, Kearney MT, Camus A (2014) Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia. Fish Shellfish Immunol 41:593–599

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Taskinen J, Kortet R (2002) Dead and alive parasites: sexual ornaments signal resistance in the male fish, Rutilus rutilus. Evol Ecol Res 4:919–929

    Google Scholar 

  • Vainikka A, Taskinen J, Löytynoja K, Jokinen I, Kortet R (2009) Measured immunocompetence relates to the proportion of dead parasites in a wild roach population. Funct Ecol 23:187–195

    Article  Google Scholar 

  • Vemulapalli R, He Y, Cravero S, Sriranganathan N, Boyle SM, Schurig GG (2000) Overexpression of protective antigen as a novel approach to enhance vaccine efficacy of Brucella abortus strain RB51. Infect Immun 68:3286–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wester PW, Vethaak AD, van Muiswinkel WB (1994) Fish biomarkers in immunotoxicology. Toxicology 86:213–232

    Article  CAS  PubMed  Google Scholar 

  • Whatmore AM, Dale E-J, Stubberfield E, Muchowski J, Koylass M, Dawson C, Gopaul KK, Perrett LL, Jones M, Lawrie A (2015) Isolation of Brucella from a White’s tree frog (Litoria caerulea). JMM Case Reports. doi:10.1099/jmmcr.0.000017

    Google Scholar 

  • Xu Y-C, Yang D-B, Wang D-H (2012) No evidence for a trade-off between reproductive investment and immunity in a rodent. PLoS One 7(5):e37182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Watanuki H, Sakai M (2001) Effects of estradiol, progesterone and testosterone on the function of carp, Cyprinus carpio, phagocytes in vitro. Comp Biochem Physiol C Toxicol Pharmacol 129:49–55

    Article  CAS  PubMed  Google Scholar 

  • Zaitseva MB, Golding H, Betts M, Yamauchi A, Bloom ET, Butler LE, Stevan L, Golding B (1995) Human peripheral blood CD4þ and CD8þ T-cells express Th1-like cytokine mRNA and proteins following in vitro stimulation with heat- inactivated B. abortus. Infect Immun 63:2720–2728

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Arturs Škute for support during all phases of this study. We also thank Riina, Rein and Risto Kalda and Imre Taal for their assistance. The study was funded by the Science Council of Latvia (Grant No. # 290/2012) (to I.A. Krams and T. Krama), by a project (Grant No. # 2013/0067/1DP/1.1.1.2.0/13/APIA/VIAA/060) of the European Social Fund, and a personal grant (PUT1223) from the Estonian Ministry of Education and Science (to I.A. Krams and T. Krama). The research reported here complied with the legal ethical requirements of the Republic of Estonia (ethical permit #56 issued by the Ministry of Rural Affairs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrikis A. Krams.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krams, I.A., Rumvolt, K., Saks, L. et al. Reproduction compromises adaptive immunity in a cyprinid fish. Ecol Res 32, 559–566 (2017). https://doi.org/10.1007/s11284-017-1467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1467-y

Keywords

Navigation