Ecological Research

, Volume 32, Issue 4, pp 481–493 | Cite as

DNA barcoding of freshwater zooplankton in Lake Kasumigaura, Japan

  • Wataru Makino
  • Natsumi Maruoka
  • Megumi Nakagawa
  • Noriko Takamura
Original Article
  • 402 Downloads

Abstract

Although DNA barcoding is a promising tool for the identification of organisms, it requires the development of a specific reference sequence library for sample application. In the present study we developed a Lake Kasumigaura, Japan, zooplankton DNA barcode library to increase the sensitivity of future zooplankton monitoring for detecting lake ecosystem condition changes. Specifically, the mitochondrial cytochrome c oxidase subunit I (mtCOI) haplotype, i.e., the primary DNA barcode, was examined for each zooplankton taxon. In crustaceans, 37 mtCOI haplotypes were obtained from 99 individuals, representing four and 15 morpho-species of Copepoda and Cladocera, respectively. Comparing these sequences with those in GenBank shows that the lake harbors putative non-indigenous species, such as Daphnia ambigua. In rotifers, 132 mtCOI haplotypes were obtained from 302 individuals, representing 11 genera and one unclassified taxon. The automatic barcode gap discovery (ABGD) algorithm separated these haplotypes into 43 species. Brachionus cf. calyciflorus was divided into five ABGD species, and different ABGD species tended to occur in different seasons. Seasonal ABGD-species succession was also observed within Polyarthra spp. and Synchaeta spp. These seasonal successions were not detected by inspections of external morphology alone. Accepting up to 7% sequence divergence within the same species, mtCOI reference sequences were available in GenBank for three, 13, and 17 species in Copepoda, Cladocera, and Rotifera, respectively. The present results, therefore, reveal the serious shortage of mtCOI reference sequences for rotifers, and underscore the urgency of developing rotifer mtCOI barcode libraries on a global scale.

Keywords

Biodiversity DNA barcoding Freshwater zooplankton Lake Kasumigaura Zooplankton monitoring programs 

Notes

Acknowledgements

The sampling was conducted as part of the Lake Kasumigaura Long-term Environmental Monitoring Program of the National Institute for Environmental Studies, Japan. Special thanks go to those who participated in the field-work at the lake. The study was supported by grants from the Japan Society for the Promotion of Science (Nos. 15K07211 and 15H02380) and by the Environment Research and Technology Development Fund (4-1602).

Supplementary material

11284_2017_1458_MOESM1_ESM.pdf (591 kb)
Supplementary material 1 (PDF 591 kb)

References

  1. Baek SY, Jang KH, Choi EH, Ryu SH, Kim SK, Lee JH et al (2016) DNA barcoding of metazoan zooplankton copepods from South Korea. PLoS One 11:e0157307. doi: 10.1371/journal.pone.0157307 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ban S, Makino W, SakanoH Haruna H, Ueda H (2013) Annual variation in biomass and the community structure of crustacean zooplankton over 5 years in Lake Toya, Japan. Limnology 14:59–70. doi: 10.1007/s10201-012-0387-3 CrossRefGoogle Scholar
  3. Bekker EI, Karabanov DP, Galimov YR, Kotov AA (2016) DNA Barcoding reveals high cryptic diversity in the North Eurasian Moina species (Crustacea: Cladocera). PLoS One 11:e0161737. doi: 10.1371/journal.pone.0161737 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benzie JAH (2005) Cladocera: the genus Daphnia (including Daphniopsis). Backhuys Publishers, LeidenGoogle Scholar
  5. Briski E, Cristescu ME, Bailey SA, MacIssac HJ (2011) Use of DNA barcode to detect invertebrate invasive species from diapausing eggs. Biol Invasion 13:1325–1340. doi: 10.1007/s10530-010-9892-7 CrossRefGoogle Scholar
  6. Briski E, Ghabooli S, Bailey SA, MacIsaac HJ (2016) Are genetic databases sufficiently populated to detect non-indigenous species? Biol Invasions 18:1911–1922. doi: 10.1007/s10530-016-1134-1 CrossRefGoogle Scholar
  7. Cieplinski A, Weisse T, Obertegger U (2016) High diversity in Keratella cochlearis (Rotifera, Monogononta): morphological and genetic evidence. Hydrobiologia. doi: 10.1007/s10750-016-2781-z Google Scholar
  8. Costa FO, deWaard FR, Boutillier F, Ratnasingham S, Dooh ST, Hajibabael M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295. doi: 10.1139/f07-008 CrossRefGoogle Scholar
  9. Costello MJ, May RM, Stork NE (2013) Can we name earth’s species before they go extinct? Science 329:413–416. doi: 10.1126/science.1230318 CrossRefGoogle Scholar
  10. Cristescu MEA, Hebert PDN (2002) Phylogeny and adaptive radiation in the Onychopoda (Crustacea, Cladocera): evidence from multiple gene sequences. J Evol Biol 15:838–849. doi: 10.1046/j.1420-9101.2002.00466.x CrossRefGoogle Scholar
  11. De Melo R, Hebert PDN (1994) A taxonomic reevaluation of North American Bosminidae. Can J Zool 72:1808–1825. doi: 10.1139/z94-245 CrossRefGoogle Scholar
  12. Defaye D, Kawabata K (1993) Mesocyclops dissimilis n. sp. from Lake Biwa, Japan. Hydrobiologia 257:121–126. doi: 10.1007/BF00005952 CrossRefGoogle Scholar
  13. Deiner K, Fronhofer EA, Mächler E, Walser J-C, Altermatt F (2015) Envornmental DNA reveals that rivers are conveyer belt of biodiversity information. Nat Commun 7:12544. doi: 10.1038/ncomms12544 CrossRefGoogle Scholar
  14. Dumont HJ, Negrea S (2002) Introduction to the class Branchiopoda. Backhuys Publishers, LeidenGoogle Scholar
  15. Einsle U (1996) Copepoda: Cyclopoida. SPB Academic Publishing, Amsterdam, Genera Cyclops, Megacyclops, AcanthocyclopsGoogle Scholar
  16. Elías-Gutiérrez M, Jerónimo FM, Ivanova NV, Valdez-Moreno M, Hebert PDN (2008) DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa 1839:1–42Google Scholar
  17. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  18. Frey DG (1982) Questions concerning cosmopolitanism in Cladocera. Arch Hydrobiol 93:484–502Google Scholar
  19. García-Morales AE, Elías-Gutiérrez M (2013) DNA barcoding of freshwater rotifera in Mexico: evidence of cryptic speciation in common rotifers. Mol Ecol Res 13:1097–1107. doi: 10.1111/1755-0998.12080 Google Scholar
  20. Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13:851–861. doi: 10.1111/1755-0998.12138 CrossRefPubMedGoogle Scholar
  21. Geng X, Zhang L, Xu M, Deng D, Zhang H (2014) PCR amplication and sequence analysis of CO I genes and their flanking regions of mitochondrial DNA from three Daphnia species. J Nanjing Agricultural Univ 37:44–50. doi: 10.7685/j.issn.1000-2030.2014.03.006 Google Scholar
  22. Hanazato T, Aizaki M (1991) Changes in species composition of cladoceran community in Lake Kasumigaura during 1986–1989: occurrence of Daphnia galeata and its effect on algal biomass. Jpn J Limnol 52:45–55. doi: 10.3739/rikusui.52.45 CrossRefGoogle Scholar
  23. Hanazato T, Yasuno M (1985) Occurrence of Daphnia ambigua Scourfield in Lake Kasumigaura. Jpn J Limnol 46:212–214. doi: 10.3739/rikusui.46.212 CrossRefGoogle Scholar
  24. Hanazato T, Yasuno M (1987) Characteristics of biomass and production of cladoceran zooplankton in Lake Kasumigaura. Jpn J Limnol 48:S45–S57. doi: 10.3739/rikusui.48.Special_45 CrossRefGoogle Scholar
  25. Hebert PDN, Cywinska A, Ball SL, deWaaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321. doi: 10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  26. Hebert PDN, Ratnasingham S, deWaard DR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc London B 270(Suppl 1):S96–S99. doi: 10.1098/rsbl.2003.0025 CrossRefGoogle Scholar
  27. Hebert PDN, Witt JDS, Adamowicz SJ (2003c) Phylogeographical patterning in Daphnia ambigua: regional divergence and intercontinental cohesion. Limnol Oceanogr 48:261–268. doi: 10.4319/lo.2003.48.1.0261 CrossRefGoogle Scholar
  28. Ishida T (2002) Illustrated fauna of the freshwater cyclopoid copepods in Japan. Bull Biogeogr Soc Jpn 57:37–106 (in Japanese with English abstract) Google Scholar
  29. Jeppesen E, Leavitt PR, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198. doi: 10.1016/S0169-5347(01)02100-0 CrossRefPubMedGoogle Scholar
  30. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  31. Knebelsberger T, Dunz AR, Neumann D, Geiger MF (2015) Molecular diversity of Gemany’s freshwater fishes and lampreys assessed by DNA barcoding. Mol Ecol Res 15:562–572CrossRefGoogle Scholar
  32. Kotov AA, Ishida S, Taylor DJ (2009) Revision of the genus Bosmina Baird, 1845 (Cladocera: Bosminidae), based on evidence from male morphological characters and molecular phylogenies. Zool J Linnean Soc 156:1–51. doi: 10.1111/j.1096-3642.2008.00475.x CrossRefGoogle Scholar
  33. Kotov A, Forró L, Korovchinsky NM, Petrusek A (2013) World checklist of freshwater Cladocera species. World Wide Web electronic publication. http://fada.biodiversity.be/group/show/17. Accessed 24 Sept 2015
  34. Lakatos C, Urabe J, Makino W (2015) Cryptic diversity of Japanese Diaphanosoma (Crustacea: Cladocera) revealed by morphological and molecular assessments. Inland Wat 5:253–262. doi: 10.5268/IW-5.3.847 CrossRefGoogle Scholar
  35. Lampert W, Sommer U (1997) Limnoecology. The ecology of lakes and streams. Oxford University Press, OxfordGoogle Scholar
  36. Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, Meier R, Yeo DCJ (2016) Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R Soc Open Sci 3:160635. doi: 10.1098/rsos.160635 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ma X, Wolinska J, Petrusek A, Gießler S, Hu W, Yin M (2016) The phenotypic plasticity in Chinese populations of Daphnia similoides sinensis: recurvate helmeted forms are associated with the presence of predators. J Plankton Res 38:855–864. doi: 10.1093/plankt/fbw031 CrossRefGoogle Scholar
  38. Makino W, Ban S (1998) Diel changes in vertical overlap between Cyclops strenuus (Copepoda; Cyclopoida) and its prey in oligotrophic Lake Toya, Hokkaido, Japan. J Mar Syst 15:139–148. doi: 10.1016/S0924-7963(97)00073-0 CrossRefGoogle Scholar
  39. Makino W, Tanabe AS (2009) Extreme population genetic differentiation and secondary contact in the freshwater copepod Acanthodiaptomus pacificus in the Japanese Archipelago. Mol Ecol 18:3699–3713. doi: 10.1111/j.1365-294X.2009.04307.x CrossRefPubMedGoogle Scholar
  40. Makino W, Haruna H, Ban S (1996) Diel vertical migration and feeding rhythm of Daphnia longispina and Bosmina coregoni in Lake Toya, Hokkaido, Japan. Hydrobiologia 337:133–143. doi: 10.1007/BF00028514 CrossRefGoogle Scholar
  41. Makino W, Ohtsuki H, Urabe J (2013) Finding copepod footprints: a protocol for molecular identification of diapausing eggs in lake sediments. Limnology 14:269–282. doi: 10.1007/s10201-013-0404-1 CrossRefGoogle Scholar
  42. Marrone F, Lo Brutto S, Hundsdoerfer AK, Arculeo M (2013) Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoda, Diaptomidae). Mol Phylogenet Evol 66:190–202. doi: 10.1016/j.ympev.2012.09.016 CrossRefPubMedGoogle Scholar
  43. Mills S, Alcántara-Rodríguez JA, Ciros-Pérez J, Gómez A, Hagiwara A, Galindo KH, Jersabek CD, Malekzadeh-Viayeh R, Leasi F, Lee J-S, Welch DBM, Papakostas S, Riss S, Segres H, Serra M, Shiel R, Smolak R, Snell TW, Stelzer C-P, Tang CQ, Wallace RL, Fontaneto D, Walsh EJ (2016) Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) trough DNA taxonomy. Hydrobiologia. doi: 10.1007/s10750-016-2725-7 Google Scholar
  44. Mizuno T, Takahashi E (eds) (2000) An illustrated guide to freshwater zooplankton in Japan (in Japanese). Tokai University Press, TokyoGoogle Scholar
  45. Obertegger U, Fontaneto D, Flaim G (2012) Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwat Biol 57:1545–1553. doi: 10.1111/j.1365-2427.2012.02815.x CrossRefGoogle Scholar
  46. Obertegger U, Flaim G, Fontaneto D (2014) Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwat Biol 59:2413–2427. doi: 10.1111/fwb.12447 CrossRefGoogle Scholar
  47. Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55. doi: 10.4319/lo.1986.31.1.0045 CrossRefGoogle Scholar
  48. Popova EV, Petrusek A, Kořínek V, Mergeay J, Bekker EI, Karabanov DP, Galimov YR, Neretina TV, Taylor DJ, Kotov AA (2016) Revision of the Old World Daphnia (Ctenodaphnia) similis group (Cladocera, Daphniidae). Zootaxa 4161:1–40. doi: 10.11646/zootaxa.4161.1.1 CrossRefPubMedGoogle Scholar
  49. Prosser S, Martínez-Arce A, Elías-Gutiérrez M (2013) A new set of primers for COI amplification from freshwater microcrustaceans. Mol Ecol Res 13:1151–1155. doi: 10.1111/1755-0998.12132 Google Scholar
  50. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automated Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x CrossRefPubMedGoogle Scholar
  51. Sarri C, Stamatis C, Sarafidou T, Galara I, Godosopoulos V, Kolovos M, Liakou C, Tastsoglou S, Mamuris Z (2014) A new set of 16S rRNA universal primers for identification of animal species. Food Control 43:35–41. doi: 10.1016/j.foodcont.2014.02.036 CrossRefGoogle Scholar
  52. Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104Google Scholar
  53. Sørensen MV, Giribet G (2006) A modern approach to rotiferan phylogeny: combining morphological and molecular data. Mol Phylogenet Evol 40:585–608. doi: 10.1016/j.ympev.2006.04.001 CrossRefPubMedGoogle Scholar
  54. Takamura N, Nakagawa M, Hanazato T (2017) Zooplankton abundance in the pelagic region of Lake Kasumigaura (Japan): monthly data since 1980. Ecol Res 32:1–1. doi: 10.1007/s11284-016-1406-3 CrossRefGoogle Scholar
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tanaka S (2000) A taxonomic revision of Japanese Bosminidae (Crustacea, Cladocera). Bull Toyama Sci Museum 23:109–125Google Scholar
  57. Tang CQ, Obertegger U, Fontaneto D, Barraclough TG (2014) Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution 68:2901–2916. doi: 10.1111/evo.12483 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Taylor DJ, Ishikane CR, Haney RA (2002) The systematics of Holarctic bosminids and a revision that reconciles molecular and morphological evolution. Limnol Oceanogr 47:1486–1495. doi: 10.4319/lo.2002.47.5.1486 CrossRefGoogle Scholar
  59. Telfer A, Young M, Quinn J, Perez K, Sobel C, Sones J, Levesque-Beaudin V, Derbyshire R, Fernandez-Triana J, Rougerie R, Thevanayagam A, Boskovic A, Borisenko A, Cadel A, Brown A, Pages A, Castillo A, Nicolai A, Glenn Mockford B, Bukowski B, Wilson B, Trojahn B, Lacroix C, Brimblecombe C, Hay C, Ho C, Steinke C, Warne C, Garrido Cortes C, Engelking D, Wright D, Lijtmaer D, Gascoigne D, Hernandez Martich D, Morningstar D, Neumann D, Steinke D, Marco DeBruin D, Dobias D, Sears E, Richard E, Damstra E, Zakharov E, Laberge F, Collins G, Blagoev G, Grainge G, Ansell G, Meredith G, Hogg I, McKeown J, Topan J, Bracey J, Guenther J, Sills-Gilligan J, Addesi J, Persi J, Layton K, D’Souza K, Dorji K, Grundy K, Nghidinwa K, Ronnenberg K, Lee K, Xie L, Lu L, Penev L, Gonzalez M, Rosati M, Kekkonen M, Kuzmina M, Iskandar M, Mutanen M, Fatahi M, Pentinsaari M, Bauman M, Nikolova N, Ivanova N, Jones N, Weerasuriya N, Monkhouse N, Lavinia P, Jannetta P, Hanisch P, McMullin R, Ojeda Flores R, Mouttet R, Vender R, Labbee R, Forsyth R, Lauder R, Dickson R, Kroft R, Miller S, MacDonald S, Panthi S, Pedersen S, Sobek-Swant S, Naik S, Lipinskaya T, Eagalle T, Decaëns T, Kosuth T, Braukmann T, Woodcock T, Roslin T, Zammit T, Campbell V, Dinca V, Peneva V, Hebert P, deWaard J (2015) Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodivers Data J 3:e6313. doi: 10.3897/BDJ.3.e6313 CrossRefGoogle Scholar
  60. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  61. Trebitz AS, Hoffman JC, Grant GW, Billehus TM, Pilgrim EM (2015) Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries. Sci Rep 5:12162. doi: 10.1038/srep12162 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ueda H, Reed JW (eds) (2003) Copepoda: Cyclopoida. Genera mesocyclops and thermocyclops. Backhuys Publishers, LeidenGoogle Scholar
  63. Xiang X-L, Xi Y-L, Wen X-L, Zhang J-Y, Ma Q (2010) Spatial patterns of genetic differentiation in Brachionus calyciflorus species complex collected from East China in summer. Hydrobiologia 638:67–83. doi: 10.1007/s10750-009-0010-8 CrossRefGoogle Scholar
  64. Xu L, Han B-P, Van Damme K, Vierstraete A, Vanfleteren JR, Dumont HJ (2011) Biogeography and evolution of the Holartic zooplankton genus Leptodora (Crustacea: Branchiopoda: Haplopoda). J Biogeogr 38:359–370. doi: 10.1111/j.1365-2699.2010.02409.x CrossRefGoogle Scholar
  65. Yoshida T, Kagami M, Gurung TB, Urabe J (2001) Seasonal succession of zooplankton in the north basin of Lake Biwa. Aquat Ecol 35:19–29. doi: 10.1023/A:1011498202050 CrossRefGoogle Scholar
  66. Young S-S, Ni M–H, Liu M–Y (2012) Systematic study of the Simocephalus sensu stricto species group (Cladocera: Daphniidae) from Taiwan by morphometric and molecular analyses. Zool Stud 51:222–231Google Scholar
  67. Zhang G, Xi Y-L, Xue Y-H, Xiang X-L, Wen X-L (2015) Coal fly ash effluent affects the distribution of Brachionus calyciflorus sibling species. Ecotoxicol Environ Saf 112:60–67. doi: 10.1016/j.ecoenv.2014.09.036 CrossRefPubMedGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Department of BiologyTohoku UniversitySendaiJapan
  3. 3.Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan

Personalised recommendations