Skip to main content

Effects of hydrologic modifications to riparian plant communities in a large river system in northern China

An Erratum to this article was published on 20 May 2015

Abstract

Hydrologic modifications to rivers caused by anthropogenic activity have major impacts on riparian ecosystems. Alterations to the hydrologic regime and their interactions with natural environmental parameters exert selective pressures on riparian vegetation, resulting in adaptations to specific flow attributes. However, few studies have attempted to detect these effects under multiple hydrologic conditions, especially for rivers in semi-dry and semi-humid regions. Using the “space-for-time substitution” method, we investigated the effects of hydrologic modifications to the riparian plant community along the Yongding River of northern China, by comparing community structure metrics (diversity, plant moisture affinity group, and lifespan) and a function metric (biomass) under three streamflows (perennial, seasonal and dried-up). Among these streamflows, seasonal flow reaches had the greatest plant diversity. Responses of plant moisture group and lifespan were inconsistent in different hydrologic stages, although they varied significantly (P < 0.01). Annuals and biennials greatly increased from perennial to seasonal streamflow (~59 %), while perennials decreased (~41 %). However, from seasonal to dried-up flow, the percentage of mesics and xerics increased by 12.8 and 11.8 %, respectively, while hydrics decreased dramatically (by 24.6 %). Perennial flow had significantly greater aboveground biomass (P < 0.05) than the other two flows. Hydrologic conditions and their related soil nutrients were the main driving factors of community structure and function, which explained 21.0 and 18.0 % of variation, respectively. These findings reveal the response process of the riparian plant community during hydrologic modification from perennial to dried-up streamflow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ali M (2000) Predictors of plant diversity in a hyperarid desert wadi ecosystem. J Arid Env 45:215–230. doi:10.1006/jare.2000.0631

    Article  Google Scholar 

  2. An S, Cheng X, Sun S, Wang Y, Li J (2003) Composition change and vegetation degradation of riparian forests in the Altai Plain, NW China. Plant Ecol 164:75–84. doi:10.1023/A:1021225204808

    Article  Google Scholar 

  3. Araya YN, Gowing DJ, Dise N (2013) Does soil nitrogen availability mediate the response of grassland composition to water regime? J Veg Sci 24:506–517. doi:10.1111/j.1654-1103.2012.01481.x

    Article  Google Scholar 

  4. Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers Res Manag 16:457–467. doi:10.1002/1099-1646(200009/10)16:5<457:AID-RRR597>3.0.CO;2-B

    Article  Google Scholar 

  5. Berlow EL, Brose U, Martinez ND (2008) The “Goldilocks factor” in food webs. Proc Natl Acad Sci USA 105:4079–4080. doi:10.1073/pnas.0800967105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bren LJ (1992) Tree invasion of an intermittent wetland in relation to changes in the flooding frequency of the River Murray, Australia. Aust Ecol 17:395–408. doi:10.1111/j.1442-9993.1992.tb00822.x

    Article  Google Scholar 

  7. Breshears DD, Cobb NS, Rich PM et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148. doi:10.1073/pnas.0505734102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Capon SJ (2003) Plant community responses to wetting and drying in a large arid floodplain. River Res Appl 19:509–520. doi:10.1002/rra.730

    Article  Google Scholar 

  9. Causin HF, Wulff RD (2003) Changes in the responses to light quality during ontogeny in Chenopodium album. Can J Bot 81:152–163. doi:10.1139/b03-012

    Article  Google Scholar 

  10. Changming L, Jingjie Y, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China plain. Water Int 26:265–272. doi:10.1080/02508060108686913

    Article  Google Scholar 

  11. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi:10.1111/j.1461-0248.2004.00707.x

    Article  Google Scholar 

  12. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. http://purl.oclc.org/estimates

  13. Debinski DM, Wickham H, Kindsher K, Caruthers JC, Germino M (2010) Montane meadow change during drought varies with background hydrologic regime and plant functional group. Ecol 91:1672–1681. doi:10.1890/09-0567.1

    Article  Google Scholar 

  14. Development Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  15. Dwire KA, Kauffman JB, Brookshire ENJ, Baham JE (2004) Plant biomass and species composition along an environmental gradient in montane riparian meadows. Oecologia 139:309–317. doi:10.1007/s00442-004-1498-2

    Article  PubMed  Google Scholar 

  16. Elmore AJ, Mustard JF, Manning SJ (2003) Regional patterns of plant community response to changes in water: owens Valley, California. Ecol Appl 13:443–460. doi:10.1890/1051-0761(2003)013[0443:RPOPCR]2.0.CO;2

  17. Feld CK, Hering D (2007) Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw Biol 52:1380–1399. doi:10.1111/j.1365-2427.2007.01749.x

    Article  Google Scholar 

  18. Fossati J (1999) Water as resource and disturbance for wadi vegetation in a hyperarid area (Wadi Sannur, Eastern Desert, Egypt). J Arid Env 43:63–77. doi:10.1006/jare.1999.0526

    Article  Google Scholar 

  19. Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. doi:10.1146/annurev.ecolsys.30.1.51

    Article  Google Scholar 

  20. Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  21. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwyn Hyman, London

    Book  Google Scholar 

  22. He S, Xing Q, Yin Z (1993) Beijing Flora, 3rd edn. Beijing Publishing House, Beijing (in Chinese)

    Google Scholar 

  23. Hill AR (1996) Nitrate removal in stream riparian zones. J Env Qual 25:743. doi:10.2134/jeq1996.00472425002500040014x

    Article  CAS  Google Scholar 

  24. Huang JZ, Shrestha A, Tollenaar M, Deen W, Rahimian H, Swanton CJ (2000) Effects of photoperiod on the phenological development of redroot pigweed (Amaranthus retroflexus L.). Can J Plant Sci 80:929–938. doi:10.4141/P99-134

    Article  Google Scholar 

  25. Hughes FMR (1997) Floodplain biogeomorphology. Prog Phys Geogr 21:501–529. doi:10.1177/030913339702100402

    Article  Google Scholar 

  26. Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. J Ecol 93:1094–1103. doi:10.1111/j.1365-2745.2005.01057.x

    Article  Google Scholar 

  27. Katz GL, Stromberg JC, Denslow MW (2009) Streamside herbaceous vegetation response to hydrologic restoration on the San Pedro River, Arizona. Ecohydrology 2:213–225. doi:10.1002/eco.62

    Article  Google Scholar 

  28. Katz GL, Denslow MW, Stromberg JC (2012) The Goldilocks effect: intermittent streams sustain more plant species than those with perennial or ephemeral flow. Freshw Biol 57:467–480. doi:10.1111/j.1365-2427.2011.02714.x

    Article  Google Scholar 

  29. Kingsford RT, Thomas RF (1995) The Macquarie Marshes in Arid Australia and their waterbirds: a 50-year history of decline. Env Manag 19:867–878. doi:10.1007/BF02471938

    Article  Google Scholar 

  30. Klute A (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods. ASA and SSSA, Madison, WI

  31. Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172. doi:10.1046/j.1365-2427.2003.01086.x

    Article  Google Scholar 

  32. Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738. doi:10.1111/j.1365-2427.2009.02322.x

    Article  Google Scholar 

  33. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  Google Scholar 

  34. Leigh C, Sheldon F, Kingsford RT, Arthington AH (2010) Sequential floods drive “booms” and wetland persistence in dryland rivers: a synthesis. Mar Freshw Res 61:896. doi:10.1071/MF10106

    Article  CAS  Google Scholar 

  35. Lite S, Bagstad K, Stromberg J (2005) Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J Arid Env 63:785–813. doi:10.1016/j.jaridenv.2005.03.026

    Article  Google Scholar 

  36. Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100. doi:10.1016/j.tree.2003.10.002

    Article  PubMed  Google Scholar 

  37. McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83:31. doi:10.2307/2261148

    Article  Google Scholar 

  38. Minggagud H, Yang J (2013) Wetland plant species diversity in sandy land of a semi-arid inland region of China. Plant Biosyst 147:25–32. doi:10.1080/11263504.2012.737865

    Article  Google Scholar 

  39. Naiman R (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst. pp 621–658

  40. Nilsson C, Svedmark M (2002) Basic principles and ecological consequences of changing water regimes: riparian plant communities. Env Manag 30:468–480. doi:10.1007/s00267-002-2735-2

    Article  Google Scholar 

  41. Pettit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regul Rivers Res Manag 17:201–215. doi:10.1002/rrr.624

    Article  Google Scholar 

  42. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784. doi:10.2307/1313099

    Article  Google Scholar 

  43. Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress. Adv Water Resour 24:725–744. doi:10.1016/S0309-1708(01)00006-9

    Article  Google Scholar 

  44. Rajcan I, AghaAlikhani M, Swanton CJ, Tollenaar M (2002) Development of redroot pigweed is influenced by light spectral quality and quantity. Crop Sci 42:1930. doi:10.2135/cropsci2002.1930

    Article  Google Scholar 

  45. Ren L, Wang M, Li C, Zhang W (2002) Impacts of human activity on river runoff in the northern area of China. J Hydrol 261:204–217. doi:10.1016/S0022-1694(02)00008-2

    Article  Google Scholar 

  46. Richter BD, Braun DP, Mendelson MA, Master LL (1997) Threats to Imperiled freshwater fauna. Amenazas a la Fauna Dulceacuicola en Riesgo. Conserv Biol 11:1081–1093. doi:10.1046/j.1523-1739.1997.96236.x

    Article  Google Scholar 

  47. Rupp DE, Larned ST, Arscott DB, Schmidt J (2008) Reconstruction of a daily flow record along a hydrologically complex alluvial river. J Hydrol 359:88–104. doi:10.1016/j.jhydrol.2008.06.019

    Article  Google Scholar 

  48. Salinas MJ, Casas JJ (2007) Riparian vegetation of two semi-arid mediterranean rivers: basin-scale responses of woody and herbaceous plants to environmental gradients. Wetl 27:831–845. doi:10.1672/0277-5212(2007)27[831:RVOTSM]2.0.CO;2

  49. Schimper AFW (1898) Pflanzen-geographie auf physiologischer Grundlage. G. Fischer, Jena

    Google Scholar 

  50. Shafroth P, Stromberg J (2002) Riparian vegetation response to altered disturbance and stress regimes. Ecol Appl 12:107–123. doi:10.2307/3061140

    Article  Google Scholar 

  51. Steward AL, von Schiller D, Tockner K, Marshall JC, Bunn SE (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Env 10:202–209. doi:10.1890/110136

    Article  Google Scholar 

  52. Stromberg JC, Patten DT (1990) Riparian vegetation instream flow requirements: a case study from a diverted stream in the Eastern Sierra Nevada, California, USA. Environ Manag 14:185–194. doi:10.1007/BF02394035

    Article  Google Scholar 

  53. Stromberg JC, Bagstad KJ, Leenhouts JM, Lite SJ, Makings E (2005) Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona). River Res Appl 21:925–938. doi:10.1002/rra.858

    Article  Google Scholar 

  54. Stromberg JC, Boudell JA, Hazelton AF (2008) Differences in seed mass between hydric and xeric plants influence seed bank dynamics in a dryland riparian ecosystem. Funct Ecol 22:205–212. doi:10.1111/j.1365-2435.2007.01375.x

    Article  Google Scholar 

  55. Stromberg JC, Hazelton AF, White MS (2009a) Plant species richness in ephemeral and perennial reaches of a dryland river. Biodivers Conserv 18:663–677. doi:10.1007/s10531-008-9532-z

    Article  Google Scholar 

  56. Stromberg JC, Hazelton AF, White MS et al (2009b) Ephemeral wetlands along a spatially intermittent river: temporal patterns of vegetation development. Wetl 29:330–342. doi:10.1672/08-124.1

    Article  Google Scholar 

  57. Tabacchi E, Planty-Tabacchi A, Salinas MJ, Décamps H (1996) Landscape structure and diversity in riparian plant communities: a longitudinal comparative study. Regul Rivers Res Manag 12:367–390. doi:10.1002/(SICI)1099-1646(199607)12:4/5<367:AID-RRR424>3.3.CO;2-O

    Article  Google Scholar 

  58. Tian YC, Zhou YM, Wu BF, Zhou WF (2008) Risk assessment of water soil erosion in upper basin of Miyun Reservoir, Beijing, China. Env Geol 57:937–942. doi:10.1007/s00254-008-1376-z

    Article  Google Scholar 

  59. Walker KF, Sheldon F, Puckridge JT (1995) A perspective on dryland river ecosystems. Regul Rivers Res Manag 11:85–104. doi:10.1002/rrr.3450110108

    Article  Google Scholar 

  60. Wang C, Cao G, Wang Q, Shi JJ, Du YG, You RJ (2007) Characteristics of artificial grassland plant communities with different establishment duration and their relationships with soil properties in the source region of Three Rivers in China. Chin J Appl Ecol 18:2426–2431

    CAS  Google Scholar 

  61. Wang W, Tang XQ, Huang SL, Zhang SH, Lin C, Liu DW, Che HJ, Yang Q, Scholz M (2010) Ecological restoration of polluted plain rivers within the Haihe River basin in China. Water Air Soil Pollut 211:341–357. doi:10.1007/s11270-009-0304-5

    Article  CAS  Google Scholar 

  62. Wang G, Li H, An M, Ni J, Ji SJ, Wang J (2011) A regional-scale consideration of the effects of species richness on above-ground biomass in temperate natural grasslands of China. J Veg Sci 22:414–424. doi:10.1111/j.1654-1103.2011.01279.x

    Article  Google Scholar 

  63. Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Conserv 83:269–278. doi:10.1016/S0006-3207(97)00083-9

    Article  Google Scholar 

  64. Warming E (1909) Saxifragaceae. 1. Morphology and biology. Meddelelser Grønl 36:169–236

    Google Scholar 

  65. With KA, Crist TO (1995) Critical thresholds in species’ responses to landscape structure. Ecol 76:2446–2459. doi:10.2307/2265819

    Article  Google Scholar 

  66. Wu Z, Raven PH, Hong D (1994) Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, Missouri

  67. Wulff R, Causin HF, Benitez O, Bacalini PA (1999) Intraspecific variability and maternal effects in the response to nutrient addition in Chenopodium album. Can J Bot 77:1150–1158. doi:10.1139/b99-124

    Google Scholar 

  68. Young-Mathews A, Culman SW, Sánchez-Moreno S, Toby O’Geen A, Ferris H, Hollander AD, LE Jackson (2010) Plant-soil biodiversity relationships and nutrient retention in agricultural riparian zones of the Sacramento Valley, California. Agrofor Syst 80:41–60. doi:10.1007/s10457-010-9332-9

    Article  Google Scholar 

  69. Yu M, Wei YS, Liu JG, Liu PB, Zhang ZM, Wei W, Wang YW, Zhong J, Yang Y, Xiao QC, Yu DW, Zheng X (2011) Impact of socioeconomic development on water resource and water environment of Yongding River in Beijing. Acta Sci Circumstantiae 31:1817–1825

    CAS  Google Scholar 

  70. Zelnik I, Čarni A (2008) Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Community Ecol 9:1–9. doi:10.1556/ComEc.9.2008.1.1

    Article  Google Scholar 

  71. Zhang J, Döll P (2008) Assessment of ecologically relevant hydrological change in China due to water use and reservoirs. Adv Geosci 18:25–30. doi:10.5194/adgeo-18-25-2008

    Article  CAS  Google Scholar 

  72. Zhang Z, Shen Z, Xue Y et al (2000) Evolution of Groundwater Environment in North China Plain, 1st edn. Geological Publishing House, Beijing

    Google Scholar 

Download references

Acknowledgments

We thank the people who helped with fieldwork and provided helpful suggestions on the experimental design and manuscript improvement, in particular Hua Zheng, Zhiming Zhang, Yushun Chen, Yun Wang, and Juanjuan Zhao. This study was supported by the Special Fund of Forestry Industrial Research for Public Welfare of China (201204201) and the National Program on Key Basic Research Project (2006CB403402). MG was funded by the EU FP7 project BioFresh (http://www.freshwaterbiodiversity.eu, contract no. 226874). We also thank the anonymous reviewers for their useful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiyun Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiu, C., Gerisch, M., Ilg, C. et al. Effects of hydrologic modifications to riparian plant communities in a large river system in northern China. Ecol Res 30, 461–469 (2015). https://doi.org/10.1007/s11284-015-1243-9

Download citation

Keywords

  • Riparian vegetation
  • Flow disconnection
  • Floodplains
  • Haihe River basin
  • Grassland