Ecological Research

, Volume 30, Issue 3, pp 461–469 | Cite as

Effects of hydrologic modifications to riparian plant communities in a large river system in northern China

  • Chen Xiu
  • Michael Gerisch
  • Christiane Ilg
  • Klaus Henle
  • Zhiyun OuyangEmail author
Original Article


Hydrologic modifications to rivers caused by anthropogenic activity have major impacts on riparian ecosystems. Alterations to the hydrologic regime and their interactions with natural environmental parameters exert selective pressures on riparian vegetation, resulting in adaptations to specific flow attributes. However, few studies have attempted to detect these effects under multiple hydrologic conditions, especially for rivers in semi-dry and semi-humid regions. Using the “space-for-time substitution” method, we investigated the effects of hydrologic modifications to the riparian plant community along the Yongding River of northern China, by comparing community structure metrics (diversity, plant moisture affinity group, and lifespan) and a function metric (biomass) under three streamflows (perennial, seasonal and dried-up). Among these streamflows, seasonal flow reaches had the greatest plant diversity. Responses of plant moisture group and lifespan were inconsistent in different hydrologic stages, although they varied significantly (P < 0.01). Annuals and biennials greatly increased from perennial to seasonal streamflow (~59 %), while perennials decreased (~41 %). However, from seasonal to dried-up flow, the percentage of mesics and xerics increased by 12.8 and 11.8 %, respectively, while hydrics decreased dramatically (by 24.6 %). Perennial flow had significantly greater aboveground biomass (P < 0.05) than the other two flows. Hydrologic conditions and their related soil nutrients were the main driving factors of community structure and function, which explained 21.0 and 18.0 % of variation, respectively. These findings reveal the response process of the riparian plant community during hydrologic modification from perennial to dried-up streamflow.


Riparian vegetation Flow disconnection Floodplains Haihe River basin Grassland 



We thank the people who helped with fieldwork and provided helpful suggestions on the experimental design and manuscript improvement, in particular Hua Zheng, Zhiming Zhang, Yushun Chen, Yun Wang, and Juanjuan Zhao. This study was supported by the Special Fund of Forestry Industrial Research for Public Welfare of China (201204201) and the National Program on Key Basic Research Project (2006CB403402). MG was funded by the EU FP7 project BioFresh (, contract no. 226874). We also thank the anonymous reviewers for their useful suggestions.

Supplementary material

11284_2015_1243_MOESM1_ESM.doc (82 kb)
Supplementary material 1 (DOC 82 kb)


  1. Ali M (2000) Predictors of plant diversity in a hyperarid desert wadi ecosystem. J Arid Env 45:215–230. doi: 10.1006/jare.2000.0631 CrossRefGoogle Scholar
  2. An S, Cheng X, Sun S, Wang Y, Li J (2003) Composition change and vegetation degradation of riparian forests in the Altai Plain, NW China. Plant Ecol 164:75–84. doi: 10.1023/A:1021225204808 CrossRefGoogle Scholar
  3. Araya YN, Gowing DJ, Dise N (2013) Does soil nitrogen availability mediate the response of grassland composition to water regime? J Veg Sci 24:506–517. doi: 10.1111/j.1654-1103.2012.01481.x CrossRefGoogle Scholar
  4. Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers Res Manag 16:457–467. doi: 10.1002/1099-1646(200009/10)16:5<457:AID-RRR597>3.0.CO;2-B CrossRefGoogle Scholar
  5. Berlow EL, Brose U, Martinez ND (2008) The “Goldilocks factor” in food webs. Proc Natl Acad Sci USA 105:4079–4080. doi: 10.1073/pnas.0800967105 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bren LJ (1992) Tree invasion of an intermittent wetland in relation to changes in the flooding frequency of the River Murray, Australia. Aust Ecol 17:395–408. doi: 10.1111/j.1442-9993.1992.tb00822.x CrossRefGoogle Scholar
  7. Breshears DD, Cobb NS, Rich PM et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148. doi: 10.1073/pnas.0505734102 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Capon SJ (2003) Plant community responses to wetting and drying in a large arid floodplain. River Res Appl 19:509–520. doi: 10.1002/rra.730 CrossRefGoogle Scholar
  9. Causin HF, Wulff RD (2003) Changes in the responses to light quality during ontogeny in Chenopodium album. Can J Bot 81:152–163. doi: 10.1139/b03-012 CrossRefGoogle Scholar
  10. Changming L, Jingjie Y, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China plain. Water Int 26:265–272. doi: 10.1080/02508060108686913 CrossRefGoogle Scholar
  11. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi: 10.1111/j.1461-0248.2004.00707.x CrossRefGoogle Scholar
  12. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9.
  13. Debinski DM, Wickham H, Kindsher K, Caruthers JC, Germino M (2010) Montane meadow change during drought varies with background hydrologic regime and plant functional group. Ecol 91:1672–1681. doi: 10.1890/09-0567.1 CrossRefGoogle Scholar
  14. Development Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  15. Dwire KA, Kauffman JB, Brookshire ENJ, Baham JE (2004) Plant biomass and species composition along an environmental gradient in montane riparian meadows. Oecologia 139:309–317. doi: 10.1007/s00442-004-1498-2 CrossRefPubMedGoogle Scholar
  16. Elmore AJ, Mustard JF, Manning SJ (2003) Regional patterns of plant community response to changes in water: owens Valley, California. Ecol Appl 13:443–460. doi:10.1890/1051-0761(2003)013[0443:RPOPCR]2.0.CO;2Google Scholar
  17. Feld CK, Hering D (2007) Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw Biol 52:1380–1399. doi: 10.1111/j.1365-2427.2007.01749.x CrossRefGoogle Scholar
  18. Fossati J (1999) Water as resource and disturbance for wadi vegetation in a hyperarid area (Wadi Sannur, Eastern Desert, Egypt). J Arid Env 43:63–77. doi: 10.1006/jare.1999.0526 CrossRefGoogle Scholar
  19. Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. doi: 10.1146/annurev.ecolsys.30.1.51 CrossRefGoogle Scholar
  20. Grime JP (1979) Plant strategies and vegetation processes. Wiley, New YorkGoogle Scholar
  21. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwyn Hyman, LondonCrossRefGoogle Scholar
  22. He S, Xing Q, Yin Z (1993) Beijing Flora, 3rd edn. Beijing Publishing House, Beijing (in Chinese)Google Scholar
  23. Hill AR (1996) Nitrate removal in stream riparian zones. J Env Qual 25:743. doi: 10.2134/jeq1996.00472425002500040014x CrossRefGoogle Scholar
  24. Huang JZ, Shrestha A, Tollenaar M, Deen W, Rahimian H, Swanton CJ (2000) Effects of photoperiod on the phenological development of redroot pigweed (Amaranthus retroflexus L.). Can J Plant Sci 80:929–938. doi: 10.4141/P99-134 CrossRefGoogle Scholar
  25. Hughes FMR (1997) Floodplain biogeomorphology. Prog Phys Geogr 21:501–529. doi: 10.1177/030913339702100402 CrossRefGoogle Scholar
  26. Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. J Ecol 93:1094–1103. doi: 10.1111/j.1365-2745.2005.01057.x CrossRefGoogle Scholar
  27. Katz GL, Stromberg JC, Denslow MW (2009) Streamside herbaceous vegetation response to hydrologic restoration on the San Pedro River, Arizona. Ecohydrology 2:213–225. doi: 10.1002/eco.62 CrossRefGoogle Scholar
  28. Katz GL, Denslow MW, Stromberg JC (2012) The Goldilocks effect: intermittent streams sustain more plant species than those with perennial or ephemeral flow. Freshw Biol 57:467–480. doi: 10.1111/j.1365-2427.2011.02714.x CrossRefGoogle Scholar
  29. Kingsford RT, Thomas RF (1995) The Macquarie Marshes in Arid Australia and their waterbirds: a 50-year history of decline. Env Manag 19:867–878. doi: 10.1007/BF02471938 CrossRefGoogle Scholar
  30. Klute A (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods. ASA and SSSA, Madison, WIGoogle Scholar
  31. Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172. doi: 10.1046/j.1365-2427.2003.01086.x CrossRefGoogle Scholar
  32. Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738. doi: 10.1111/j.1365-2427.2009.02322.x CrossRefGoogle Scholar
  33. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi: 10.1007/s004420100716 CrossRefGoogle Scholar
  34. Leigh C, Sheldon F, Kingsford RT, Arthington AH (2010) Sequential floods drive “booms” and wetland persistence in dryland rivers: a synthesis. Mar Freshw Res 61:896. doi: 10.1071/MF10106 CrossRefGoogle Scholar
  35. Lite S, Bagstad K, Stromberg J (2005) Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J Arid Env 63:785–813. doi: 10.1016/j.jaridenv.2005.03.026 CrossRefGoogle Scholar
  36. Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100. doi: 10.1016/j.tree.2003.10.002 CrossRefPubMedGoogle Scholar
  37. McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83:31. doi: 10.2307/2261148 CrossRefGoogle Scholar
  38. Minggagud H, Yang J (2013) Wetland plant species diversity in sandy land of a semi-arid inland region of China. Plant Biosyst 147:25–32. doi: 10.1080/11263504.2012.737865 CrossRefGoogle Scholar
  39. Naiman R (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst. pp 621–658Google Scholar
  40. Nilsson C, Svedmark M (2002) Basic principles and ecological consequences of changing water regimes: riparian plant communities. Env Manag 30:468–480. doi: 10.1007/s00267-002-2735-2 CrossRefGoogle Scholar
  41. Pettit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regul Rivers Res Manag 17:201–215. doi: 10.1002/rrr.624 CrossRefGoogle Scholar
  42. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784. doi: 10.2307/1313099 CrossRefGoogle Scholar
  43. Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress. Adv Water Resour 24:725–744. doi: 10.1016/S0309-1708(01)00006-9 CrossRefGoogle Scholar
  44. Rajcan I, AghaAlikhani M, Swanton CJ, Tollenaar M (2002) Development of redroot pigweed is influenced by light spectral quality and quantity. Crop Sci 42:1930. doi: 10.2135/cropsci2002.1930 CrossRefGoogle Scholar
  45. Ren L, Wang M, Li C, Zhang W (2002) Impacts of human activity on river runoff in the northern area of China. J Hydrol 261:204–217. doi: 10.1016/S0022-1694(02)00008-2 CrossRefGoogle Scholar
  46. Richter BD, Braun DP, Mendelson MA, Master LL (1997) Threats to Imperiled freshwater fauna. Amenazas a la Fauna Dulceacuicola en Riesgo. Conserv Biol 11:1081–1093. doi: 10.1046/j.1523-1739.1997.96236.x CrossRefGoogle Scholar
  47. Rupp DE, Larned ST, Arscott DB, Schmidt J (2008) Reconstruction of a daily flow record along a hydrologically complex alluvial river. J Hydrol 359:88–104. doi: 10.1016/j.jhydrol.2008.06.019 CrossRefGoogle Scholar
  48. Salinas MJ, Casas JJ (2007) Riparian vegetation of two semi-arid mediterranean rivers: basin-scale responses of woody and herbaceous plants to environmental gradients. Wetl 27:831–845. doi:10.1672/0277-5212(2007)27[831:RVOTSM]2.0.CO;2Google Scholar
  49. Schimper AFW (1898) Pflanzen-geographie auf physiologischer Grundlage. G. Fischer, JenaGoogle Scholar
  50. Shafroth P, Stromberg J (2002) Riparian vegetation response to altered disturbance and stress regimes. Ecol Appl 12:107–123. doi: 10.2307/3061140 CrossRefGoogle Scholar
  51. Steward AL, von Schiller D, Tockner K, Marshall JC, Bunn SE (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Env 10:202–209. doi: 10.1890/110136 CrossRefGoogle Scholar
  52. Stromberg JC, Patten DT (1990) Riparian vegetation instream flow requirements: a case study from a diverted stream in the Eastern Sierra Nevada, California, USA. Environ Manag 14:185–194. doi: 10.1007/BF02394035 CrossRefGoogle Scholar
  53. Stromberg JC, Bagstad KJ, Leenhouts JM, Lite SJ, Makings E (2005) Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona). River Res Appl 21:925–938. doi: 10.1002/rra.858 CrossRefGoogle Scholar
  54. Stromberg JC, Boudell JA, Hazelton AF (2008) Differences in seed mass between hydric and xeric plants influence seed bank dynamics in a dryland riparian ecosystem. Funct Ecol 22:205–212. doi: 10.1111/j.1365-2435.2007.01375.x CrossRefGoogle Scholar
  55. Stromberg JC, Hazelton AF, White MS (2009a) Plant species richness in ephemeral and perennial reaches of a dryland river. Biodivers Conserv 18:663–677. doi: 10.1007/s10531-008-9532-z CrossRefGoogle Scholar
  56. Stromberg JC, Hazelton AF, White MS et al (2009b) Ephemeral wetlands along a spatially intermittent river: temporal patterns of vegetation development. Wetl 29:330–342. doi: 10.1672/08-124.1 CrossRefGoogle Scholar
  57. Tabacchi E, Planty-Tabacchi A, Salinas MJ, Décamps H (1996) Landscape structure and diversity in riparian plant communities: a longitudinal comparative study. Regul Rivers Res Manag 12:367–390. doi: 10.1002/(SICI)1099-1646(199607)12:4/5<367:AID-RRR424>3.3.CO;2-O CrossRefGoogle Scholar
  58. Tian YC, Zhou YM, Wu BF, Zhou WF (2008) Risk assessment of water soil erosion in upper basin of Miyun Reservoir, Beijing, China. Env Geol 57:937–942. doi: 10.1007/s00254-008-1376-z CrossRefGoogle Scholar
  59. Walker KF, Sheldon F, Puckridge JT (1995) A perspective on dryland river ecosystems. Regul Rivers Res Manag 11:85–104. doi: 10.1002/rrr.3450110108 CrossRefGoogle Scholar
  60. Wang C, Cao G, Wang Q, Shi JJ, Du YG, You RJ (2007) Characteristics of artificial grassland plant communities with different establishment duration and their relationships with soil properties in the source region of Three Rivers in China. Chin J Appl Ecol 18:2426–2431Google Scholar
  61. Wang W, Tang XQ, Huang SL, Zhang SH, Lin C, Liu DW, Che HJ, Yang Q, Scholz M (2010) Ecological restoration of polluted plain rivers within the Haihe River basin in China. Water Air Soil Pollut 211:341–357. doi: 10.1007/s11270-009-0304-5 CrossRefGoogle Scholar
  62. Wang G, Li H, An M, Ni J, Ji SJ, Wang J (2011) A regional-scale consideration of the effects of species richness on above-ground biomass in temperate natural grasslands of China. J Veg Sci 22:414–424. doi: 10.1111/j.1654-1103.2011.01279.x CrossRefGoogle Scholar
  63. Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Conserv 83:269–278. doi: 10.1016/S0006-3207(97)00083-9 CrossRefGoogle Scholar
  64. Warming E (1909) Saxifragaceae. 1. Morphology and biology. Meddelelser Grønl 36:169–236Google Scholar
  65. With KA, Crist TO (1995) Critical thresholds in species’ responses to landscape structure. Ecol 76:2446–2459. doi: 10.2307/2265819 CrossRefGoogle Scholar
  66. Wu Z, Raven PH, Hong D (1994) Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MissouriGoogle Scholar
  67. Wulff R, Causin HF, Benitez O, Bacalini PA (1999) Intraspecific variability and maternal effects in the response to nutrient addition in Chenopodium album. Can J Bot 77:1150–1158. doi: 10.1139/b99-124 Google Scholar
  68. Young-Mathews A, Culman SW, Sánchez-Moreno S, Toby O’Geen A, Ferris H, Hollander AD, LE Jackson (2010) Plant-soil biodiversity relationships and nutrient retention in agricultural riparian zones of the Sacramento Valley, California. Agrofor Syst 80:41–60. doi: 10.1007/s10457-010-9332-9 CrossRefGoogle Scholar
  69. Yu M, Wei YS, Liu JG, Liu PB, Zhang ZM, Wei W, Wang YW, Zhong J, Yang Y, Xiao QC, Yu DW, Zheng X (2011) Impact of socioeconomic development on water resource and water environment of Yongding River in Beijing. Acta Sci Circumstantiae 31:1817–1825Google Scholar
  70. Zelnik I, Čarni A (2008) Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Community Ecol 9:1–9. doi: 10.1556/ComEc.9.2008.1.1 CrossRefGoogle Scholar
  71. Zhang J, Döll P (2008) Assessment of ecologically relevant hydrological change in China due to water use and reservoirs. Adv Geosci 18:25–30. doi: 10.5194/adgeo-18-25-2008 CrossRefGoogle Scholar
  72. Zhang Z, Shen Z, Xue Y et al (2000) Evolution of Groundwater Environment in North China Plain, 1st edn. Geological Publishing House, BeijingGoogle Scholar

Copyright information

© The Ecological Society of Japan 2015

Authors and Affiliations

  • Chen Xiu
    • 1
    • 3
  • Michael Gerisch
    • 2
    • 3
  • Christiane Ilg
    • 4
  • Klaus Henle
    • 3
  • Zhiyun Ouyang
    • 1
    Email author
  1. 1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Aquatic Ecology and Centre for Water and Environmental ResearchUniversity of Duisburg-EssenEssenGermany
  3. 3.Department of Conservation BiologyUFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  4. 4.Hepia-University of Applied Science Western SwitzerlandJussySwitzerland

Personalised recommendations