Skip to main content
Log in

Effects of environmental and anthropogenic drivers on Amur tiger distribution in northeastern China

  • Original Article
  • Published:
Ecological Research

Abstract

We examined environmental and anthropogenic factors drive range loss in large mammals, using presence data of Amur tigers opportunistically collected between 2000 and 2012, and anthropogenic and environmental variables to model the distribution of the Amur tiger in northeastern China. Our results suggested that population distribution models of different subregions showed different habitat factors determining tiger population distribution patterns. Where farmland cover was over 50 km2 per pixel (196 km2), distance was within 15 km to the railway in Changbaishan and road density (length per pixel) increased in Wandashan, the relative probability of Amur tiger occurrence exhibited monotonic avoidance responses; however, where distance was within 150 km of the Sino-Russia border, the occurrence probability of Amur tiger was relatively high. We analyzed the avoidance or preference responses of Amur tiger distribution to elevation, snow depth and Viewshed. Furthermore, different subregional models detected a variety of spatial autocorrelation distances due to different population clustering patterns. We found that spatial models significantly improved model fits for non-spatial models and made more robust habitat suitability predications than that of non-spatial models. Consequently, these findings provide useful guidance for habitat conservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altman DG, Bland M (1994) Diagnostic tests 2: predictive values. Br Med J 309:102

    Article  CAS  Google Scholar 

  • Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347

    Article  Google Scholar 

  • Beard KH, Hengartner N, Skelly DK (1999) Effectiveness of predicting breeding bird distributions using probabilistic models. Conser Biol 13:1108–1116

    Article  Google Scholar 

  • Bennett EL, Robinson JG (2000) Hunting of wildlife in tropical forests: implications for biodiversity and forest peoples. Toward environmentally and socially sustainable development. Environment Department Paper No. 76 (Biodiversity Series: Impact Studies). The World Bank, Washington, DC

  • Betts MG, Ganio LM, Huso MMP, Som NA, Huettmann F, Bowman J, Wintle BA (2009) Comment on ‘‘Methods to account for spatial autocorrelation in the analysis of species distributional data: a review’’. Ecography. doi:10.1111/j.1600-0587.2008.05562.x

    Google Scholar 

  • Carroll C, Miquelle DG (2006) Spatial viability analysis of Amur tiger Panthera tigris altaica in the Russian Far East: the role of protected areas and landscape matrix in population persistence. J Appl Ecol 43:1056–1068

    Article  Google Scholar 

  • Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Na S, Shun Q, Zhang L, Tang J, Lang J, Liu T, Liu K, Xiao W, Bao W (2011) Amur Tiger and Prey in Jilin Hunchun National Nature Reserve, China. Chin J Zool 46:46–52

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes-models and applications. Pion, London

    Google Scholar 

  • Davis FW, Seo C, Zielinski WJ (2007) Regional variation in home range scale habitat models for fisher (Martes pennanti) in California. Ecol Appl 17:2195–2213

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, De Campos Telles MP (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conser Biol 16:924–935

    Article  Google Scholar 

  • Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol Biogeogr 16:129–138

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schroder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Duchamp C, Boyer J, Briaudet P-E, Leonard Y, Moris P, Bataille A, Dahier T, Delacour G, Millisher G, Miquel C, Poillot C, Marboutin E (2012) A dual frame survey to assess time- and space-related changes of the colonizing wolf population in France. Hystrix Ital J Mamm 23:14–28

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Frid A (2003) Dall’s sheep responses to overflights by helicopter and fixed-wing aircraft. Biol Conserv 110:387–399

    Article  Google Scholar 

  • Goodrich JM, Kerley LL, Miquelle DG, Smirnov EN, Schleyer B, Quigley HB, Hornocker MG (2005) Social structure of Amur tigers on Sikhote-Alin Biosphere Zapovednik. In: Miquelle DG, Smirnov EN, Goodrich JM (eds) Tigers in Sikhote-Alin Zapovednik, PSP, Vladivostok, Russia (in Russian), pp 50–60

  • Goodrich JM, Miquelle DG, Smirnov EN, Kerley LL, Quigley HB, Hornocker MG (2010) Spatial structure of Amur (Siberian) tigers (Panthera tigris altaica) on Sikhote-Alin Biosphere Zapovednik, Russia. J Mamm 91:737–748

    Article  Google Scholar 

  • Granadeiro JP, Andrade J, Palmeirim JM (2004) Modelling the distribution of shorebirds in estuarine areas using generalised additive models. J Sea Res 52:27–240

    Article  Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Haining R (2003) Spatial data analysis—theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman, Hall/CRC, London

    Google Scholar 

  • Hebblewhite M, Zimmermann F, Li Z, Miquelle DG, Zhang M, Sun H, Mörschel F, Wu Z, Sheng L, Purekhovsky A, Zhu C (2012) Is there a future for Amur tigers in a restored tiger conservation landscape in Northeast China? Anim Conserv 15(6):1367–9430

    Article  Google Scholar 

  • Hemmer H (1976) Fossil history of the living Felidae. In: Eaton RL (ed) The World’s Cats, 111(2). The Carnivore Research Institute, Burke Museum, Seattle, pp 1–14

  • Heptner VG, Sludskii AA (1992) Mammals of the Soviet Union. Volume II, Part 2. Carnivora (hyenas and cats). Leiden, Brill

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Wildl Monogr 54:187–211

    Article  Google Scholar 

  • Jędrzejewski W, Jędrzejewska B, Okarma H, Ruprecht AL (1992) Wolf predation and snow cover as mortality factors in the ungulate community of the Bialowieża National Park, Poland. Oecologia 90:27–36

    Article  Google Scholar 

  • Jiang G, Ma J, Zhang M (2006) Spatial distribution of distribution of ungulate responses to habitat factors in Wandashan, northeastern China. J Wildl Manage 70:1470–1476

    Article  Google Scholar 

  • Jiang G, Zhang M, Ma J (2007) Effects of human disturbance on movement, foraging and bed site selection of red deer Cervus elaphus xanthopygus in the Wandashan Mountains, northeastern China. Act Theriol 52:435–446

    Article  Google Scholar 

  • Jiang G, Zhang M, Ma J (2008) Habitat use and separation between red deer and roe deer in relation to human disturbance in the Wandashan mountains, northeastern China. Wildl Biol 14:92–100

    Article  Google Scholar 

  • Jiang G, Ma J, Zhang M, Stott P (2009) Multiple spatial scale resource selection function models in relation to human disturbance for moose in northeastern China. Ecol Res 24:423–440

    Article  Google Scholar 

  • Jiang G, Ma J, Zhang M, Stott P (2010) Multi-scale foraging habitat use and interactions by sympatric cervids in northeastern China. J Wildl Manage 74:678–689

    Article  Google Scholar 

  • Johnson CJ, Boyce MS, Case RL, Cluff HD, Gau RJ, Gunn A, Mulders R (2005) Cumulative effects of human developments on Arctic wildlife. Wildl Monogr 160:1–36

    Google Scholar 

  • Kang A, Xie Y, Tang J, Sanderson EW, Ginsberg JR, Zhang E (2010) Historic distribution and recent loss of tigers in China. Integr Zool 5:335–341

    Article  PubMed  Google Scholar 

  • Karanth KU, Sunquist ME (2000) Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J Zool 250:255–265

    Article  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Natl Acad Sci USA 101:4854–4858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kerley LL, Goodrich JM, Miquelle DG, Smirnov EN, Quigley HB, Hornocker MG (2002) Effects of roads and human disturbance on Amur tigers. Anim Conserv 16:97–108

    Google Scholar 

  • Kitchener AC, Dugmore AJ (2000) Biogeographical change in the tiger, Panthera tigris. Anim Conserv 3:113–124

    Article  Google Scholar 

  • Kitchener AC, Yamaguchi N (2010) What is a Tiger? Biogeography, morphology, and taxonomy. In: Tilson R, Nyhus P (eds) Tigers of the World: The Science, Politics and Conservation of Panthera tigris, 2nd edn. Elsevier, Oxford, pp 53–85

    Chapter  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    Article  PubMed  Google Scholar 

  • Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U (2004) Fragmented landscapes, road mortality and patch connectivity: modelling influences on the dispersal of Eurasian lynx. J Appl Ecol 41:711–723

    Article  Google Scholar 

  • Latimer AM, Wu SS, Gelfand AE, Silander JA (2006) Building statistical models to analyze species distributions. Ecol Appl 16:33–50

    Article  PubMed  Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wang Y (2013) Applying various algorithms for species distribution modeling. Integr Zool 8:124–135

    Article  PubMed  Google Scholar 

  • Li T, Jiang J, Wu Z, Han X, Wu J, Yang X (2001) Survey on Amur tigers in Jilin Province. Acta Theriologica Sinica 21:1–6

    Google Scholar 

  • Li B, Zhang E, Zhang Z, Liu Y (2008) Preliminary monitoring of Amur tiger population in Jilin Hunchun National Nature Reserve. Acta Theriologica Sinica 28:333–334

    Google Scholar 

  • Li B, Zhang E, Liu Z (2009) Livestock depredation by Amur tigers in Hunchun Nature Reserve, Jilin, China. Acta Theriologica Sinica 29:231–238

    Google Scholar 

  • Li Z, Zimmerman F, Hebblewhite M, Purekhovsky A, Morschel F, Zhu C, Miquelle DG (2010) Study on the potential tiger habitat in the Changbaishan area. China Forestry Publishing House, Beijing

    Google Scholar 

  • Linkie M, Smith RJ, Leader-Williams N (2004) Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodivers Conserv 13:1809–1818

    Article  Google Scholar 

  • Luan X, Qu Y, Li D, Liu S, Wang X, Wu B, Zhu C (2011) Habitat evaluation of wild Amur tiger (Panthera tigris altaica) and conservation priority setting in north-eastern China. J Environ Manage 92:31–42

    Article  Google Scholar 

  • Luo SJ, Kim JH, Johnson WE, Walt JVD, Martenson J, Karanth UK (2004) Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol 2:2275–2293

    CAS  Google Scholar 

  • Lyet A, Thuiller W, Cheylan M, Besnard A (2013) Fine-scale regional distribution modelling of rare and threatened species: bridging GIS Tools and conservation in practice. Diversity Distrib 19(7):651–663

  • Ma Y (2005) Changes in numbers and distribution of the Amur tiger in Northeast China in the past century: a summary report. In: Zhang ED, Miquelle DG, Wang TH (eds) Recovery of the wild Amur tiger population in China: process and prospect. China Forestry Publishing House, Beijing

    Google Scholar 

  • Mace RD, Waller JS (1996) Grizzly bear distribution and human conflicts in Jewel Basin Hiking Area, Swan Mountains, Montana. Wildlife Soc 24(3):461–467

    Google Scholar 

  • Mahoney SP, Schaefer JA (2002) Hydroelectric development and the disruption of migration in caribou. Biol Conserv 107:147–153

    Article  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical analysis and design for field studies, 2nd edn. Kluwer, Boston

    Google Scholar 

  • Miquelle DG, Smirnov EN, Quigley HG, Hornocker MG, Nikolaev IG, Matyushkin EN (1996) Food habits of Amur tigers in Sikhote-Ali Zapovednik and Russian Far East, and implication for conservation. J Wildl Res 1:138–147

    Google Scholar 

  • Miquelle DG, Smirnov EN, Merrill TW, Myslenkov AE, Quigley HB, Hornocker MG, Schleyer B (1999) Hierarchical spatial analysis of Amur tiger relationships to habitat and prey. In: Seidensticker J, Christie S, Jackson P (eds) Riding the tiger. Tiger conservation in human-dominated landscapes, Cambridge University Press, Cambridge, pp 71–99

  • Mushtaq M, Hussain I, Mian A, Munir S, Ahmed I, Khan AA (2013) Field evaluation of some bait additives against Indian crested porcupine (Hystrix indica) (Rodentia: Hystricidae). Integr Zool 8:285–292

    Article  PubMed  Google Scholar 

  • Pauley GR, Peek JM, Zager P (1993) Predicting white-tailed deer habitat use in northern Idaho. J Wildl Manage 57:904–913

    Article  Google Scholar 

  • Proulx G, MacKenzie N (2012) Relative abundance of American badger (Taxidea taxus) and red fox (Vulpes vulpes) in landscapes with high and low rodenticide poisoning levels. Integr Zool 7:41–47

    PubMed  Google Scholar 

  • Quintero J, Roca R, Morgan A, Mathur A, Shi X (2010) Smart green infrastructure in tiger range countries. The World Bank, Washington, DC

    Google Scholar 

  • R Development Core Team. (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/)

  • Ramsay T, Burnett R, Krewski D (2003) Exploring bias in a generalized additive model for spatial air pollution data. Environ Health Perspect 111:1283–1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50

    Article  Google Scholar 

  • Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Model 193:675–690

    Article  Google Scholar 

  • Riitters KH, O’neill RV, Jones KB (1997) Assessing habitat suitability at multiple scales: a landscape-level approach. Biol Conserv 81:191–202

    Article  Google Scholar 

  • Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Seidensticker J (1996) Tigers. Voyageur Press, Vancouver

    Google Scholar 

  • Shenko AN, Bien WF, Spotila JR, Avery HW (2012) Effects of disturbance on small mammal community structure in the New Jersey Pinelands, USA. Integr Zool 7:16–29

    PubMed  Google Scholar 

  • Stevens MA, Boness DJ (2003) Influences of habitat features and human disturbance on use of breeding sites by a declining population of southern fur seals (Arctocephalus australis). J Zool 260:145–152

    Article  Google Scholar 

  • Stige LC, Ottersen G, Brander K, Chan KS, Stenseth NC (2006) Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Mar Ecol Prog Ser 325:227–241

    Article  Google Scholar 

  • Suarez-Seoane S, Osborne PE, Aloneso JC (2002) Large-scale habitat selection by agricultural steppe birds in Spain: identifying species–habitat responses using generalized additive models. J Appl Ecol 39:755–771

    Article  Google Scholar 

  • Sunquist M (2010) What is a Tiger? Ecology and behavior. In: Tilson R, Nyhus P (eds) Tigers of the World: The science, politics and conservation of Panthera tigris, 2nd edn. Elsevier, Oxford, pp 19–34

    Chapter  Google Scholar 

  • Tian Y, Wu J, Kou X, Li Z, Wang T, Mou P, Ge J (2009) Spatiotemporal pattern and major causes of the Amur tiger population dynamics. Biodivers Sci 17:211–225

    Google Scholar 

  • Tian Y, Wu J, Smith AT, Wang T, Kou X, Ge J (2011) Population viability of the Siberian Tiger in a changing landscape: going, going and gone? Ecol Model 222:3166–3180

    Article  Google Scholar 

  • Valeix M, Loveridge AJ, Jammes C, Davidson Z, Murindagomo F, Fritz H, Macdonald W (2009) Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology 90:23–30

    Article  PubMed  CAS  Google Scholar 

  • Whittington J, St Clair CC, Mercer G (2004) Path tortuosity and the permeability of roads and trails to wolf movement. Ecology and Society 9, 4. http://www.ecologyandsociety.org/vol9/iss1/art4. Accessed 1 January 2005

  • Wikramanayake E, Dinerstein E, Seidensticker J, Lumpkin S, Pandav B, Shrestha M, Mishra H, Ballou J, Johnsingh AJT, Chestin I, Sunarto S, Thinley P, Thapa K, Jiang G, Elagupillay S, Kafley H, Pradhan NMB, Jigme K, Teak S, Cutter P, Aziz MA, Than U (2011) A landscape-based conservation strategy to double the wild tiger population. Conserv Lett 4:219–227

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Boca Raton

    Google Scholar 

  • Yackulic CB, Sanderson EW, Uriartea M (2011) Anthropogenic and environmental drivers of modern range loss in large mammals. Proc Natl Acad Sci USA 108(10):4024–4029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang C, Zhang M, Jiang G (2012) Assessment of monitoring methods for population abundance of Amur tiger in Northeast China. Acta Ecologica Sinica 32:5943–5952

    Article  Google Scholar 

  • Zhou S, Zhang M (2011) An integrated analysis of the causes of ungulate mortality and an evaluation of habitat quality in the Wanda Mountains, Heilongjiang Province, China. Biol Conserv 144:2517–2523

    Article  Google Scholar 

  • Zhou S, Sun H, Zhang M, Lu X, Yang J, Li L (2008) Regional distribution and population size fluctuation of wild Amur tiger (Panthera tigris altaica) in Heilongjiang Province. Acta Theriologica Sinica 28:165–173

    Google Scholar 

Download references

Acknowledgments

We thank the support of the Fundamental Research Funds for the Central Universities of China (2572014EA06), “National Natural Science Foundation of China (1272336)” and the “New Century Excellent Talent Plan of the Ministry of Education of China (NCET-10-0310)”. We thank Dr. M. Hebblewhite for his useful comments on improving the quality of this paper. The authors declare no conflict of interest. In addition, we appreciate the funding and coordinating support of WWF–China Tiger Conservation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshun Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Supplementary material 2 (DOC 53 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Sun, H., Lang, J. et al. Effects of environmental and anthropogenic drivers on Amur tiger distribution in northeastern China. Ecol Res 29, 801–813 (2014). https://doi.org/10.1007/s11284-014-1160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1160-3

Keywords

Navigation