Comparative determination of skeletal maturity by hand–wrist radiograph, cephalometric radiograph and cone beam computed tomography

Abstract

Objectives

The purpose of this study is to assess the stages of skeletal maturity in cone beam computed tomography (CBCT), hand–wrist radiography (HWR) and cephalometric radiography (CR) techniques of orthodontic patients, and associate skeletal maturity stages with chronological age, in a Turkish subpopulation.

Methods

Hand–wrist radiographs, cephalometric radiographs and CBCT of 105 patients were evaluated. For evaluation of HWR, the “Hand Bone Age A Digital Atlas of Skeletal Maturity” of Vicente Gilsanz and Osman Ratib (2005) was used. Skeletal maturation in the cephalometric radiographs and sagittal sections of cervical vertebrae obtained by CBCT were evaluated with Hassel and Farman’s method (1995). All results were re-evaluated 3 weeks later to assess intra-observer reliability.

Results

Intra-observer reliability coefficients of the skeletal maturity stages in HWR, CR, and CBCT were 0.912, 0.595, 0.756 respectively (p < 0.05). Spearman’s correlation coefficient value between skeletal developmental stages in in HWR, CR, and CBCT was found to be 0.785, 0.875, and 0.791, respectively (p < 0.05).

Conclusion

Results of this study reveal that the determination of the skeletal development status with analysis of cervical vertebrae using cephalometric radiographs and CBCT is as reliable method as the evaluation of the hand–wrist radiographs and is compatible with chronological age in a subgroup of the Turkish population. When assessing the skeletal development stages of patients, both CBCT and CR can be used validly, so no extra hand–wrist radiography is required. This information is important for the prevention of increased radiation doses in patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Fishman LS. Chronological versus skeletal age, an evaluation of craniofacial growth. Angle Orthod. 1979;49(3):181–9.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Green LJ. The interrelationship among height, weight and chronological, dental and skeletal ages. Angle Orthod. 1961;31:189–93.

    Google Scholar 

  3. 3.

    Grave KC, Brown T. Skeletal ossification and the adolescent growth spurt. Am J Orthod. 1976;69(6):611–9.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Simmons K, Greulich WW. Menarcheal age and the height, weight, and skeletal age of girls age 7 to 17 years. J Pediatr. 1943;22(5):518–48.

    Article  Google Scholar 

  5. 5.

    Fishman LS. Maturational patterns and prediction during adolescence. Angle Orthod. 1987;57(3):178–93.

    PubMed  Google Scholar 

  6. 6.

    Hägg U, Taranger J. Maturation indicators and the pubertal growth spurt. Am J Orthod. 1982;82(4):299–309.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Björk A. Variations in the growth pattern of the human mandible: longitudinal. Radiographic study by the implant method. J Dent Res. 1963;42:400–11.

    PubMed  Article  Google Scholar 

  8. 8.

    Caldas MDP, Ambrosano GMB, Haiter Neto F. New formula to objectively evaluate skeletal maturation using lateral cephalometric radiographs. Braz Oral Res. 2007;21(4):330–5.

    Article  Google Scholar 

  9. 9.

    Houston WJB. Relationships between skeletal maturity estimated from hand–wrist radiographs and the timing of the adolescent growth spurt. Eur J Orthod. 1980;2(2):81–93.

    PubMed  Article  Google Scholar 

  10. 10.

    O'Reilly MT, Yanniello GJ. Mandibular growth changes and maturation of cervical vertebrae: a longitudinal cephalometric study. Angle Orthod. 1988;58(2):179–84.

    PubMed  Google Scholar 

  11. 11.

    Lamparski DG. Skeletal age assessment utilizing cervical vertebrae. Am J Orthod. 1975;67(4):458–9.

    Article  Google Scholar 

  12. 12.

    Hassel B, Farman AG. Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop. 1995;107(1):58–66.

    Article  Google Scholar 

  13. 13.

    Baccetti T, Franchi L, McNamara JA Jr. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod. 2002;72(4):316–23.

    PubMed  Google Scholar 

  14. 14.

    Baccetti T, Franchi L, McNamara JA. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semi Orthod. 2005;11(3):119–29.

    Article  Google Scholar 

  15. 15.

    Todd TW, Pyle SI. A quantitative study of the vertebral column by direct and roentgenoscopic methods. Am J Phys Anthropol. 1928;12(2):321–38.

    Article  Google Scholar 

  16. 16.

    Bick EM, Copel JW. Longitudinal growth of the human vertebra. J Bone Jt Surg Am. 1950;32(4):803–14.

    Article  Google Scholar 

  17. 17.

    Hellsing E. Cervical vertebral dimensions in 8-, 11-, and 15-year-old children. Acta Odontol Scand. 1991;49(4):207–13.

    PubMed  Article  Google Scholar 

  18. 18.

    Franchi L, Baccetti T, McNamara JA. Mandibular growth as related to cervical vertebral maturation and body height. Am J Orthod Dentofac Orthop. 2000;118(3):335–40.

    Article  Google Scholar 

  19. 19.

    Small BW. Cone beam computed tomography. Gen Dent. 2007;55(3):179–81.

    PubMed  Google Scholar 

  20. 20.

    Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72(1):75.

    PubMed  Google Scholar 

  21. 21.

    Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use practice. Dentomaxillofac Radiol. 1999;28:245–8.

    PubMed  Article  Google Scholar 

  22. 22.

    Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofacial Res. 2003;6:31–6.

    Article  Google Scholar 

  23. 23.

    Shim JJ, Heo G, Lagravère MO. Assessment of skeletal maturation based on cervical vertebrae in CBCT. Int Orthod. 2012;10(4):351–62.

    PubMed  Google Scholar 

  24. 24.

    Byun BR, Kim YI, Yamaguchi T, Maki K, Ko CC, Hwang DS, Son WS. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5-to 18-year-old Japanese children. Clin Oral Investig. 2015;19(8):2133–40.

    PubMed  Article  Google Scholar 

  25. 25.

    Joshi V, Yamaguchi T, Matsuda Y, Kaneko N, Maki K, Okano T. Skeletal maturity assessment with the use of cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6):841–9.

    PubMed  Article  Google Scholar 

  26. 26.

    Gilsanz V, Ratib O. Hand bone age: a digital atlas of skeletal maturity. Berlin, Heidelberg, New York: Springer Science & Business Media; 2005. p. 2–17.

    Google Scholar 

  27. 27.

    Fishman LS. Radiographic evaluation of skeletal maturation: a clinically oriented method based on hand–wrist films. Angle Orthod. 1982;52(2):88–112.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hunter CJ. The correlation of facial growth with body height and skeletal maturation at adolescence. Angle Orthod. 1966;36(1):44–54.

    PubMed  Google Scholar 

  29. 29.

    Simmons K, Greulich WW. Chronological versus skeletal age, an evaluation of craniofacial growth. Angle Orthod. 1979;49(3):181–9.

    Google Scholar 

  30. 30.

    Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. Am J Med Sci. 1959;238(3):393.

    Article  Google Scholar 

  31. 31.

    Houston WJ, Miller JC, Tanner JM. Prediction of the timing of the adolescent growth spurt from ossification events in hand–wrist films. Br J Orthod. 1979;6(3):145–52.

    PubMed  Article  Google Scholar 

  32. 32.

    Tanner JM, Healy MRJ, Goldstein H, Cameron N. Assessment of skeletal maturity and prediction of adult height (TW3). 3rd edn. London: W.B Saunders; 2001. p. 243–54.

    Google Scholar 

  33. 33.

    Baccetti T, Franchi L, Cameron CG, McNamara JA Jr. Treatment timing for rapid maxillary expansion. Angle Orthod. 2001;71(5):343–50.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kama JD, Gündüz AS, Darı O, Özer T. Erkek Bireylerde Servikal Vertebra Kemik Yaşının Kronolojik ve İskelet Yaş ile Karşılaştırılması. Dicle Tıp Dergisi. 2006;33(1):36–41.

    Google Scholar 

  35. 35.

    Flores-Mir C, Burgess CA, Champney M, Jensen RJ, Pitcher MR, Major PW. Correlation of skeletal maturation stages determined by cervical vertebrae and hand–wrist evaluations. Angle Orthod. 2006;76(1):1–5.

    PubMed  Google Scholar 

  36. 36.

    Uysal T, Ramoglu SI, Basciftci FA, Sari Z. Chronologic age and skeletal maturation of the cervical vertebrae and hand–wrist: is there a relationship? Am J Orthod Dentofac Orthop. 2006;130(5):622–8.

    Article  Google Scholar 

  37. 37.

    Lai EHH, Liu JP, Chang JZC, Tsai SJ, Yao CCJ, Chen MH, Lin CP. Radiographic assessment of skeletal maturation stages for orthodontic patients: hand–wrist bones or cervical vertebrae? J Formos Med Assoc. 2008;107(4):316–25.

    PubMed  Article  Google Scholar 

  38. 38.

    Kaplowitz P, Srinivasan S, He J, McCarter R, Hayeri MR, Sze R. Comparison of bone age readings by pediatric endocrinologists and pediatric radiologists using two bone age atlases. Pediatr Radiol. 2011;41(6):690–3.

    PubMed  Article  Google Scholar 

  39. 39.

    Lin FQ, Zhang J, Zhu Z, Wu YM. Comparative study of Gilsanz-Ratib digital atlas and Greulich-Pyle atlas for bone age estimation in a Chinese sample. Ann Hum Biol. 2015;42(6):523–7.

    PubMed  Article  Google Scholar 

  40. 40.

    San Román P, Palma JC, Oteo MD, Nevado E. Skeletal maturation determined by cervical vertebrae development. Eur J Orthod. 2002;24(3):303–11.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alperen Tekın.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tekın, A., Cesur Aydın, K. Comparative determination of skeletal maturity by hand–wrist radiograph, cephalometric radiograph and cone beam computed tomography. Oral Radiol 36, 327–336 (2020). https://doi.org/10.1007/s11282-019-00408-y

Download citation

Keywords

  • Cephalometric radiograph
  • Chronological age
  • Cone beam computed tomography
  • Hand–wrist radiograph
  • Skeletal age
  • Skeletal maturation