Skip to main content

Advertisement

Log in

Trabecular structural changes in the mandibular condyle caused by degenerative osteoarthritis: a comparative study by cone-beam computed tomography imaging

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

Temporomandibular osteoarthritis causes pain and loss of function. In advanced cases, it may also result in destruction of joint cartilage surfaces and bone structure.

Methods

This study was performed to examine the potential changes in the condylar trabecular bone structure in patients with temporomandibular osteoarthritis. Condylar trabecular structures were compared between 35 healthy patients and 35 patients with temporomandibular osteoarthritis by a box-counting method using fractal dimensional analysis on cone-beam computed tomography images.

Results

The average fractal dimensions of patients with temporomandibular osteoarthritis and healthy patients were 1.18 and 1.23, respectively. This difference was statistically significant (p ≤ 0.05).

Conclusions

Our results add to the existing preliminary knowledge regarding the osteoporotic changes that occur in the trabecular structure under the subchondral bone, which is normally not seen on radiographic images, as well as the destruction and remodeling that occur on the condyle surface, which is visible on radiographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Okeson JP. Management of temporomandibular disorders and occlusion. 6th ed. Philadelphia: Mosby; 2014.

    Google Scholar 

  2. White SC, Pharoah MJ. Oral radiology: principles and interpretation. 6th ed. St. Louis: Mosby; 2014.

    Google Scholar 

  3. Wadhwa S, Kapila S. TMJ disorders: future innovations in diagnostics and therapeutics. J Dent Educ. 2008;72(8):930 – 47.

    PubMed  PubMed Central  Google Scholar 

  4. Larheim TA, Abrahamsson A-K, Kristensen M, Arvidsson LZ. Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol. 2015;44(1):20140235.

    Article  PubMed  Google Scholar 

  5. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet J-P, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J Oral Fac Pain Headache. 2014;28(1):6–27.

    Article  Google Scholar 

  6. Israel HA. Internal derangement of the temporomandibular joint: new perspectives on an old problem. Oral Maxillofac Surg Clin North Am. 2016;28(3):313 – 33.

    Article  PubMed  Google Scholar 

  7. Mino-Oka A, Izawa T, Shinohara T, Mori H, Yasue A, Tomita S, et al. Roles of hypoxia inducible factor-1α in the temporomandibular joint. Arch Oral Biol. 2017;73:274 – 81.

    Article  PubMed  Google Scholar 

  8. de Souza RF, Lovato da Silva CH, Nasser M, Fedorowicz Z, Al-Muharraqi MA. Interventions for the management of temporomandibular joint osteoarthritis. Cochrane Database Syst Rev. 2012;18(4):CD007261.

    Google Scholar 

  9. Mansell JP, Tarlton JF, Bailey AJ. Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br J Rheumatol. 1997;36(1):16–9.

    Article  PubMed  Google Scholar 

  10. Karsdal M, Leeming D, Dam E, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartil. 2008;16(6):638–46.

    Article  Google Scholar 

  11. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88(5):628–35.

    Article  PubMed  Google Scholar 

  12. Mandelbrot BB. The fractal geometry of nature. New York: W.H. Freeman and Co.; 1982.

    Google Scholar 

  13. Agerberg G, Bergenholtz A. Craniomandibular disorders in adult populations of West Bothnia, Sweden. Acta Odontol Scand. 1989;47(3):129 – 40.

    Article  PubMed  Google Scholar 

  14. Milam SB. Pathogenesis of degenerative temporomandibular joint arthritides. Odontology. 2005;93(1):7–15.

    Article  PubMed  Google Scholar 

  15. Lee BD, White SC. Age and trabecular features of alveolar bone associated with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(1):92 – 8.

    Article  PubMed  Google Scholar 

  16. Abubaker AO, Raslan WF, Sotereanos GC. Estrogen and progesterone receptors in temporomandibular joint discs of symptomatic and asymptomatic persons: a preliminary study. J Oral Maxillofac Surg. 1993;51(10):1096–100.

    Article  PubMed  Google Scholar 

  17. Abrahamsson AK, Kristensen M, Arvidsson LZ, Kvien TK, Larheim TA, Haugen IK. Frequency of temporomandibular joint osteoarthritis and related symptoms in a hand osteoarthritis cohort. Osteoarthr Cartil. 2017;25(5):654–7.

    Article  PubMed  Google Scholar 

  18. Borahan MO, Mayil M, Pekiner FN. Using cone beam computed tomography to examine the prevalence of condylar bony changes in a Turkish subpopulation. Niger J Clin Pract. 2016;19(2):259–66.

    Article  PubMed  Google Scholar 

  19. Alman AC, Johnson LR, Calverley DC, Grunwald GK, Lezotte DC, Hokanson JE. Diagnostic capabilities of fractal dimension and mandibular cortical width to identify men and women with decreased bone mineral density. Osteoporos Int. 2012;23(5):1631–6.

    Article  PubMed  Google Scholar 

  20. Chuong R, Piper MA, Boland TJ. Osteonecrosis of the mandibular condyle. Pathophysiology and core decompression. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(5):539 – 45.

    Article  PubMed  Google Scholar 

  21. Kosugi K, Yonezu H, Kawashima S, Honda K, Arai Y, Shibahara T. A longitudinal study of the effect of experimental osteoporosis on bone trabecular structure in the rat mandibular condyle. Cranio. 2013;31(2):140–50.

    Article  PubMed  Google Scholar 

  22. Panday K, Gona A, Humphrey MB. Medication-induced osteoporosis: screening and treatment strategies. Ther Adv Musculoskelet Dis. 2014;6(5):185–202.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Larheim TA, Westesson PL, Hicks DG, Eriksson L, Brown DA. Osteonecrosis of the temporomandibular joint: correlation of magnetic resonance imaging and histology. J Oral Maxillofac Surg. 1999;57(8):888–98 (discussion 899).

    Article  PubMed  Google Scholar 

  24. Campos MI, Campos PS, Cangussu MC, Guimarães RC, Line SR. Analysis of magnetic resonance imaging characteristics and pain in temporomandibular joints with and without degenerative changes of the condyle. Int J Oral Maxillofac Surg. 2008;37(6):529–34.

    Article  PubMed  Google Scholar 

  25. Li G, Ma Y, Cheng TS, Landao-Bassonga E, Qin A, Pavlos NJ, et al. Identical subchondral bone microarchitecture pattern with increased bone resorption in rheumatoid arthritis as compared to osteoarthritis. Osteoarthr Cartil. 2014;22(12):2083–92.

    Article  PubMed  Google Scholar 

  26. Palconet G, Ludlow JB, Tyndall DA, Lim PF. Correlating cone beam CT results with temporomandibular joint pain of osteoarthritic origin. Dentomaxillofac Radiol. 2012;41(2):126–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oliveira ML, Pedrosa EF, Cruz AD, Haiter-Neto F, Paula FJ, Watanabe PC. Relationship between bone mineral density and trabecular bone pattern in postmenopausal osteoporotic Brazilian women. Clin Oral Investig. 2013;17(8):1847–53.

    Article  PubMed  Google Scholar 

  28. Messent E, Buckland-Wright J, Blake G. Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int. 2005;76(6):419–25.

    Article  PubMed  Google Scholar 

  29. Arsan B, Köse TE, Çene E, Özcan İ. Assessment of the trabecular structure of mandibular condyles in patients with temporomandibular disorders using fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(3):382–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadettin Kayipmaz.

Ethics declarations

Conflict of interest

Saadettin Kayipmaz, Saliha Akçay, Ömer Said Sezgin, and Celal Çandirli declare that they have no conflict of interest.

Human rights statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. The study was approved by the ethics committee at the Faculty of Medicine, Karadeniz Technical University (2016-120).

Informed consent

Informed consent was obtained from all patients for being included in the study. Additional informed consent was obtained from all patients for which identifying information is included in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayipmaz, S., Akçay, S., Sezgin, Ö.S. et al. Trabecular structural changes in the mandibular condyle caused by degenerative osteoarthritis: a comparative study by cone-beam computed tomography imaging. Oral Radiol 35, 51–58 (2019). https://doi.org/10.1007/s11282-018-0324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-018-0324-1

Keywords

Navigation