Oral Radiology

, Volume 34, Issue 1, pp 31–39 | Cite as

Comparative cone-beam computed tomography evaluation of the osseous morphology of the temporomandibular joint in temporomandibular dysfunction patients and asymptomatic individuals

  • Yasin Yasa
  • Hayati Murat Akgül
Original Article



We examined the bone components of the temporomandibular joint (TMJ) in asymptomatic individuals and patients with temporomandibular dysfunction (TMD) using cone-beam computed tomography (CBCT).


Two hundred asymptomatic individuals and 200 patients with TMD were included in this study. Condyle position, eminence height, eminence inclination, condyle shape, and fossa shape were assessed on CBCT images of the 800 temporomandibular joints.


The eminence inclination (P < 0.05), eminence height (P < 0.0001), mediolateral width of condyle (P < 0.0001), and anterior joint space (P < 0.0001) were significantly greater in male subjects compared with female subjects in both the asymptomatic group and TMD group. Comparisons of the asymptomatic group and TMD group revealed significant differences in the anterior joint space (P < 0.0001), ratio of anterior joint space to posterior joint space (P < 0.001), posterior joint space (P < 0.05), eminence inclination (P < 0.05), eminence height (P < 0.05), condyle shape (P < 0.0001), and fossa shape (P < 0.05).


The present analyses suggest that a steeper articular eminence inclination may be risk factor for TMD. The presence of TMD was associated with the condyle position in the TMJ.


Cone-beam computed tomography Articular eminence Temporomandibular dysfunction Temporomandibular joint morphology 


Compliance with Ethical Standards

Conflict of interest

Yasin Yasa and Hayati Murat Akgül declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Research involving human participants and/or animals

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.


  1. 1.
    Okeson JP. Management of temporomandibular disorders and occlusion. St Louis: Elsevier Health Sciences; 2014.Google Scholar
  2. 2.
    Wang X, Zhang J, Gan Y, Zhou Y. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res. 2015;94:666–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Laskin DM, Greene CS, Hylander WL. Temporomandibular disorders: an evidence-based approach to diagnosis and treatment. Hanover Park: Quintessence Publishing Company; 2006.Google Scholar
  4. 4.
    de Senna BR, Marques LS, França JP, Ramos-Jorge ML, Pereira LJ. Condyle-disk-fossa position and relationship to clinical signs and symptoms of temporomandibular disorders in women. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e117–e24.CrossRefGoogle Scholar
  5. 5.
    Lelis ÉR, Henriques JCG, Tavares M, de Mendonça MR, Neto AJF, de Araújo Almeida G. Cone-beam tomography assessment of the condylar position in asymptomatic and symptomatic young individuals. J Prosthet Dent. 2015;114:420–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Sümbüllü MA, Cağlayan F, Akgül HM, Yilmaz AB. Radiological examination of the articular eminence morphology using cone beam CT. Dentomaxillofac Radiol. 2014;41:234–40.CrossRefGoogle Scholar
  7. 7.
    Zhang ZL, Cheng JG, Li G, Zhang JZ, Zhang ZY, Ma XC. Measurement accuracy of temporomandibular joint space in Promax 3-dimensional cone-beam computerized tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:112–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Paknahad M, Shahidi S. Association between mandibular condylar position and clinical dysfunction index. J Craniomaxillofac Surg. 2015;43:432–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu C-K, Hsu J-T, Shen Y-W, Chen J-H, Shen W-C, Fuh L-J. Assessments of inclinations of the mandibular fossa by computed tomography in an Asian population. Clin Oral Investig. 2012;16:443–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Brooks SL, Brand JW, Gibbs SJ, Hollender L, Lurie AG, Omnell K-Å, et al. Imaging of the temporomandibular joint: a position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:609–18.CrossRefPubMedGoogle Scholar
  11. 11.
    Farman AG, Ludlow JB, Davies KL, Tyndall DA. Temporomandibular joint imaging: a comparative study of diagnostic accuracy for the detection of bone change with biplanar multidirectional tomography and panoramic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:735–43.CrossRefGoogle Scholar
  12. 12.
    Larheim T, Abrahamsson A, Kristensen M, Arvidsson L. Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol. 2015;44:20140235.CrossRefPubMedGoogle Scholar
  13. 13.
    Hintze H, Wiese M, Wenzel A. Cone beam CT and conventional tomography for the detection of morphological temporomandibular joint changes. Dentomaxillofac Radiol. 2007;36:192–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Lascala C, Panella J, Marques M. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33:291–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Sinha VP, Pradhan H, Gupta H, Mohammad S, Singh R, Mehrotra D, et al. Efficacy of plain radiographs, CT scan, MRI and ultrasonography in temporomandibular joint disorders. Natl. J Maxillofac Surg. 2012;3:2–9.CrossRefGoogle Scholar
  16. 16.
    Hintze H, Wiese M, Wenzel A. Comparison of three radiographic methods for detection of morphological temporomandibular joint changes: panoramic, scanographic and tomographic examination. Dentomaxillofac Radiol. 2009;38:134–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Celikoglu M, Ucar FI, Buyuk SK, Celik S, Sekerci AE, Akin M. Evaluation of the mandibular volume and correlating variables in patients affected by unilateral and bilateral cleft lip and palate: a cone-beam computed tomography study. Clin Oral Investig. 2016;20:1741–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Kobayashi K, Shimoda S, Nakagawa Y, Yamamoto A. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2003;19:228–31.Google Scholar
  19. 19.
    Katsavrias EG. Changes in articular eminence inclination during the craniofacial growth period. Angle Orthod. 2002;72:258–64.PubMedGoogle Scholar
  20. 20.
    Keller D, Carano A. Eminence-posterior occlusal plane angle in patients with temporomandibular disorders. Cranio. 1991;9:159–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Sülün T, Cemgil T, Duc J-MP, Rammelsberg P, Jäger L, Gernet W. Morphology of the mandibular fossa and inclination of the articular eminence in patients with internal derangement and in symptom-free volunteers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:98–107.CrossRefPubMedGoogle Scholar
  22. 22.
    Ozkan A, Altug HA, Sencimen M, Senel B. Evaluation of articular eminence morphology and inclination in TMJ internal derangement patients with MRI. Int. J Morphol. 2012;30:740–4.CrossRefGoogle Scholar
  23. 23.
    Ren Y-F, Isberg A, Westesson P-L. Steepness of the articular eminence in the temporomandibular joint: tomographic comparison between asymptomatic volunteers with normal disk position and patients with disk displacement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:258–66.CrossRefPubMedGoogle Scholar
  24. 24.
    İlgüy D, İlgüy M, Fişekçioğlu E, Dölekoğlu S, Ersan N. Articular eminence inclination, height, and condyle morphology on cone beam computed tomography. ScientificWorldJournal. 2014;2014:761714.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Galante G, Paesani D, Tallents R, Hatala M, Katzberg R, Murphy W. Angle of the articular eminence in patients with temporomandibular joint dysfunction and asymptomatic volunteers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:242–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Savastano C, Craca R. Inclination of the temporomandibular eminence and craniomandibular disorders. Minerva Stomatol. 1991;40:769–74.PubMedGoogle Scholar
  27. 27.
    Živko-Babić J, Pandurić J, Jerolimov V, Mioč M, Pižeta I, Jakovac M. Bite force in subjects with complete dentition. Coll Antropol. 2002;26:293–302.PubMedGoogle Scholar
  28. 28.
    Jasinevicius T, Pyle M, Nelson S, Lalumandier J, Kohrs K, Sawyer D. Relationship of degenerative changes of the temporomandibular joint (TMJ) with the angle of eminentia. J Oral Rehabil. 2006;33:638–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Çağlayan F, Sümbüllü MA, Akgül HM. Associations between the articular eminence inclination and condylar bone changes, condylar movements, and condyle and fossa shapes. Oral Radiol. 2014;30:84–91.CrossRefGoogle Scholar
  30. 30.
    Major PW, Kinniburgh RD, Nebbe B, Prasad NG, Glover KE. Tomographic assessment of temporomandibular joint osseous articular surface contour and spatial relationships associated with disc displacement and disc length. Am J Orthod Dentofacial Orthop. 2002;121:152–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Katzberg RW, Keith DA, Ten Eick WR, Guralnick WC. Internal derangements of the temporomandibular joint: an assessment of condylar position in centric occlusion. J Prosthet Dent. 1983;49:250–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Solberg W, Hansson T, Nordström B. The temporomandibular joint in young adults at autopsy: a morphologic classification and evaluation. Oral Rehabil. 1985;12:303–21.CrossRefGoogle Scholar
  33. 33.
    Al-koshab M, Nambiar P, John J. Assessment of condyle and glenoid fossa morphology using CBCT in South-East Asians. PLoS One. 2015;10:e0121682.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Okur A, Ozkiris M, Kapusuz Z, Karaçavus S, Saydam L. Characteristics of articular fossa and condyle in patients with temporomandibular joint complaint. Eur Rev Med Pharmacol Sci. 2012;16:2131–5.PubMedGoogle Scholar
  35. 35.
    Kinniburgh RD, Major PW, Nebbe B, West K, Glover KE. Osseous morphology and spatial relationships of the temporomandibular joint: comparisons of normal and anterior disc positions. Angle Orthod. 2000;70:70–80.PubMedGoogle Scholar
  36. 36.
    Ikeda K, Kawamura A. Assessment of optimal condylar position with limited cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2009;135:495–501.CrossRefPubMedGoogle Scholar
  37. 37.
    Yale SH, Allison BD, Hauptfuehrer J. An epidemiological assessment of mandibular condyle morphology. Oral Surg Oral Med Oral Pathol. 1966;21:169–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Matsumoto K, Kameoka S, Amemiya T, Yamada H, Araki M, Iwai K, et al. Discrepancy of coronal morphology between mandibular condyle and fossa is related to pathogenesis of anterior disk displacement of the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:626–32.CrossRefPubMedGoogle Scholar
  39. 39.
    de Farias JF, Melo SL, Bento PM, Oliveira LS, Campos PS, de Melo DP. Correlation between temporomandibular joint morphology and disc displacement by MRI. Dentomaxillofac Radiol. 2015;44:20150023.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Katsavrias EG. Morphology of the temporomandibular joint in subjects with Class II Division 2 malocclusions. Am J Orthod Dentofacial Orthop. 2006;129:470–8.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Japan 2017

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial Radiology, Faculty of DentistryOrdu UniversityOrduTurkey
  2. 2.Department of Oral and Maxillofacial Radiology, Faculty of DentistryAtaturk UniversityErzurumTurkey

Personalised recommendations