Indexing and progressive top-k similarity retrieval of trajectories

Abstract

In this work, we study the performance of state-of-the-art access methods to efficiently store and retrieve trajectories in spatial networks. First, we study how efficiently such methods can manage trajectory data to support indexing for data demanding applications where trajectory retrieval must be fast. At the same time, trajectory insertions, deletions and modifications should also be executed efficiently. Secondly, we compare the performance of progressive processing of trajectory similarity top-k queries, which is a common query in spatial applications. Specifically, we examine FNR-trees (Frentzos 2003) and MON-trees (de Almeida and Gueting, 2005), which have been proposed for trajectory management, against a novel variation of our proposed Cluster-extended Adjacency Lists (CeAL) (Tiakas and Rafailidis 2015). In particular: (a) we extend the above access methods to efficiently handle trajectories of objects that move in large spatial networks, and (b) to enhance their performance, we create an entirely new implementation framework to generate trajectories and to test the trajectory management and retrieval for each approach. With respect to the generation of trajectories, we extend the generator by Brinkhoff (2000) to efficiently support very large spatial networks. Finally, we conduct extensive experimentation which demonstrates that the proposed method CeAL prevails in space and time complexity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Notes

  1. 1.

    The terms network and graph will be used alternatively, as well as node and vertex.

  2. 2.

    Multiset is a generalization of the notion of set in which members are allowed to appear more than once.

  3. 3.

    1-d R-trees can be viewed as having flat MBR s to store points in 1-d space, i.e. on a line.

References

  1. 1.

    Agrawal, R., Faloutsos, C., Swami, A. N.: Efficient similarity search in sequence databases. In: Proceedings of the 4th International Conference on Foundations of Data Organization & Algorithms (FODO), pp 69–84. Chicago (1993)

  2. 2.

    Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp 589–598. Baltimore (2003)

  3. 3.

    Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB), pp 853–864. Trondheim (2005)

  4. 4.

    Brinkhoff, T.: Generating network-based moving objects. In: Proceedings of the 12th International Conference on Scientific & Statistical Database Management (SSDBM), pp 253–255. Berlin (2000)

  5. 5.

    Boost Graph Library Index: http://www.boost.org/doc/libs/1_57_0/libs/graph/doc/index.html

  6. 6.

    Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp 599–610. Paris (2004)

  7. 7.

    Chan, K., Fu, A. W.: Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering (ICDE), pp 126–133. Sydney (1999)

  8. 8.

    Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proceedings of the 13th International Conference on Very Large Data Bases (VLDB), pp 792–803. Toronto (2004)

  9. 9.

    Chen, L., Ozsu, T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp 491–502. Baltimore (2005)

  10. 10.

    Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), pp 426–435. Athens (1997)

  11. 11.

    de Almeida, V. T., Gueting, R. H.: Indexing the trajectories of moving objects in networks. GeoInformatica 9(1), 33–60 (2005)

    Article  Google Scholar 

  12. 12.

    Dijkstra, E. W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings of the 20th ACM Symposium on Principles of Database Systems (PODS), pp 102–113. Santa Barbara (2001)

  14. 14.

    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp 419–429. Minneapolis (1994)

  15. 15.

    Frentzos, E.: Indexing objects moving on fixed networks. In: Proceedings of the 8th International Symposium on Spatial & Temporal Databases (SSTD), pp 289–305. Santorini (2003)

  16. 16.

    Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica 11 (2), 159–193 (2007)

    Article  Google Scholar 

  17. 17.

    Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE), pp 816–825. Istanbul (2007)

  18. 18.

    Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: Proceedings of the 81th Annual Meeting of the Transportation Research Board, Washington DC (2002)

  19. 19.

    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp 47–57. Boston (1984)

  20. 20.

    Hadjieleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Proceedings of the 8th International Conference on Extending Database Technology (EDBT), pp 251–268. Prague (2002)

  21. 21.

    Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th International conference on Very Large Data Bases (VLDB), pp 406–417. Hong Kong (2002)

  22. 22.

    Lin, B., Su, J.: Shapes based trajectory queries for moving objects. In: Proceedings of the 13th Annual ACM International Workshop on Geographic information systems (GIS), pp 21–30. Bremen (2005)

  23. 23.

    Liu, K., Li, Y., He, F., Xu, J., Ding, Z.: Effective map-matching on the most simplified road network. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems (SIGSPATIAL), pp 609–612. Redondo Beach (2012)

  24. 24.

    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A., Theodoridis, Y.: R-trees: Theory and Applications. Springer, Berlin (2006)

    Google Scholar 

  25. 25.

    Morse, M.D., Patel, J.M.: An efficient and accurate method for evaluating time series similarity. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp 569–580. Beijing (2007)

  26. 26.

    Papadias, D., Tao, Y., Mouratidis, K., Hui, C. K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

    Article  Google Scholar 

  27. 27.

    Pfoser, D., Jensen, C. S.: Indexing of network constrained moving objects. In: Proceedings of the 11th International Symposium on Advances in Geographic Information Systems (GIS), pp 25–32. New Orleans (2003)

  28. 28.

    Shang, S., Ding, R., Zheng, K., Jensen, C. S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23 (3), 449–468 (2014)

    Article  Google Scholar 

  29. 29.

    Sherkat, R., Rafiei, D.: On efficiently searching trajectories and archival data for historical similarities. Proc. VLDB Endow. 1(1), 896–908 (2008)

    Article  Google Scholar 

  30. 30.

    Shortest Paths implementation benchmarks, 9th DIMACS Implementation Challenge, http://www.dis.uniroma1.it/challenge9/download.shtml

  31. 31.

    Tang, L., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving k-nearest neighboring trajectories by a set of point locations. In: Proceedings of the 12th International Conference on Advances in Spatial & Temporal Databases (SSTD), pp 223–241. Minneapolis (2011)

  32. 32.

    Tiakas, E., Rafailidis, D.: Scalable trajectory similarity search based on locations in spatial networks. In: Proceedings of the 5th International Conference Model & Data Engineering (MEDI), pp 213–224. Rhodes (2015)

  33. 33.

    Tiakas, E., Papadopoulos, A. N., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., Djordjevic-Kajan, S.: Trajectory similarity search in spatial networks. In: Proceedings of the 10th International Database Engineering & Applications Symposium (IDEAS), pp 185–192. New Delhi (2006)

  34. 34.

    Tiakas, E., Papadopoulos, A. N., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., Djordjevic-Kajan, S.: Searching for similar trajectories in spatial networks. J. Syst. Softw. 82(5), 772–788 (2009)

    Article  Google Scholar 

  35. 35.

    Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering (ICDE), pp 673–684. San Jose (2002)

  36. 36.

    Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: localizing global curve-matching algorithms. In: Proceedings of the 18th International Conference on Scientific & Statistical Database Management (SSDBM), pp 379–388. Vienna (2006)

  37. 37.

    Xu, J., Güting, R. H., Gao, Y.: Continuous k nearest neighbor queries over large multi-attribute trajectories: a systematic approach. GeoInformatica 22(4), 723–766 (2018)

    Article  Google Scholar 

  38. 38.

    Yi, B., Jagadish, H. V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proceedings of the 14th International Conference on Data Engineering (ICDE), pp 201–208. Orlando (1998)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eleftherios Tiakas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pliakis, N., Tiakas, E. & Manolopoulos, Y. Indexing and progressive top-k similarity retrieval of trajectories. World Wide Web 24, 51–83 (2021). https://doi.org/10.1007/s11280-020-00831-w

Download citation

Keywords

  • Location-based services
  • Trajectory
  • indexing
  • Spatio-temporal queries
  • Progressive processing
  • Top-k queries
  • Similarity retrieval