Skip to main content
Log in

Distributed time-respecting flow graph pattern matching on temporal graphs

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Graph pattern matching, one of the most fundamental graph problems, has been extensively investigated in the literature. Nonetheless, existing efforts mostly focus on general graphs without time information, few studies concentrate on temporal graphs, where a relationship between two vertices takes place at a specific moment and lingers for some time. Moreover, real-world temporal networks become increasingly large, and are usually distributed over multiple machines. These foster the need for evaluating pattern matching on distributed temporal graphs. In this paper, we propose a new notion so-called time-respecting flow graph, in which all paths spreading from one vertex to another are time-respecting (i.e., a series of contacts with non-decreasing time), and one vertex is distinguished as the root from which other vertices can be reached via a time-respecting path. Based on this, we explore the problem of distributed time-respecting flow graph pattern matching on temporal graphs, which could be applied in many fields such as epidemiology, social media, national security, communication, to name just a few. We present a distributed baseline algorithm based on GraphX as well as an optimized algorithm that utilizes the properties of time-respecting flow graph and the analyses of distributed algorithms to boost efficiency. Extensive experimental evaluation using both real and synthetic data sets demonstrates the efficiency and scalability of our proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. Giraph is available at http://giraph.apache.org/.

  2. Hama is available at http://hama.apache.org/.

  3. https://en.wikipedia.org/wiki/Rooted_graph#Flow_graphs.

  4. KONECT is available at http://konect.uni-koblenz.de/.

  5. https://snap.stanford.edu/data/sx-stackoverflow.html

  6. JGraphT is available at http://jgrapht.org/.

References

  1. Almagro-Blanco, P., Sancho-Caparrini, F.: Generalized graph pattern matching. arXiv:1708.03734 (2017)

  2. Batarfi, O., Shawi, R.E., Fayoumi, A.G., Nouri, R., Beheshti, S., Barnawi, A., Sakr, S.: Large scale graph processing systems: survey and an experimental evaluation. Clust. Comput. 18(3), 1189–1213 (2015)

    Article  Google Scholar 

  3. Cao, Y., Fan, W., Huai, J., Huang, R.: Making pattern queries bounded in big graphs. In: ICDE, pp 161–172 (2015)

  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPEDS 27(5), 387–408 (2012)

    Google Scholar 

  5. Cheng, J., Yu, J.X., Ding, B., Yu, P.S., Wang, H.: Fast graph pattern matching. In: ICDE, pp 913–922 (2008)

  6. Cheng, J., Zeng, X., Yu, J.X.: Top-K graph pattern matching over large graphs. In: ICDE, pp 1033–1044 (2013)

  7. Chiang, H., Huang, T.: User-adapted travel planning system for personalized schedule recommendation. Information Fusion 21, 3–17 (2015)

    Article  Google Scholar 

  8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  9. Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT, pp 8–21 (2012)

  10. Fan, W., Li, J., Luo, J., Tan, Z., Wang, X., Wu, Y.: Incremental graph pattern matching. In: SIGMOD, pp 925–936 (2011)

  11. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern queries. In: ICDE, pp 39–50 (2011)

  12. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial time. PVLDB 3(1), 264–275 (2010)

    Google Scholar 

  13. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. PVLDB 6(13), 1510–1521 (2013)

    Google Scholar 

  14. Fan, W., Wang, X., Wu, Y.: Answering graph pattern queries using views. In: ICDE, pp 184–195 (2014)

  15. Fan, W., Wang, X., Wu, Y., Deng, D.: Distributed graph simulation: impossibility and possibility. PVLDB 7(12), 1083–1094 (2014)

    Google Scholar 

  16. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching. AAAI FS 6, 45–53 (2006)

    Google Scholar 

  17. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: graph processing in a distributed dataflow framework. In: OSDI, pp 599–613 (2014)

  18. Gou, G., Chirkova, R.: Efficient algorithms for exact ranked twig-pattern matching over graphs. In: SIGMOD, pp 581–594 (2008)

  19. Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)

    Article  Google Scholar 

  20. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Annual Symposium on Foundations of Computer Science, FOCS, pp 453–462 (1995)

  21. Himmel, A., Molter, H., Niedermeier, R., Sorge, M.: Enumerating maximal cliques in temporal graphs. In: International Conference on Advances in Social Networks Analysis and Mining, ASONAM, pp 337–344 (2016)

  22. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  23. Huang, S., Cheng, J., Wu, H.: Temporal graph traversals: definitions, algorithms, and applications. arXiv:1401.1919 (2014)

  24. Huang, S., Fu, A.W., Liu, R.: Minimum spanning trees in temporal graphs. In: SIGMOD, pp 419–430 (2015)

  25. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kostakos, V.: Temporal graphs. Physica A: Statistical Mechanics and its Applications 388(6), 1007–1023 (2009)

    Article  MathSciNet  Google Scholar 

  27. Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by program dependence graph analysis. In: SIGKDD, pp 872–881 (2006)

  28. Liu, G., Zheng, K., Wang, Y., Orgun, M.A., Liu, A., Zhao, L., Zhou, X.: Multi-constrained graph pattern matching in large-scale contextual social graphs. In: ICDE, pp 351–362 (2015)

  29. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning in the cloud. PVLDB 5(8), 716–727 (2012)

    Google Scholar 

  30. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern matching. PVLDB 5(4), 310–321 (2011)

    MATH  Google Scholar 

  31. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Strong simulation: Capturing topology in graph pattern matching. ACM Trans. Database Syst. 39(1), 4:1–4:46 (2014)

    Article  MathSciNet  Google Scholar 

  32. Ma, S., Cao, Y., Huai, J., Wo, T.: Distributed graph pattern matching. In: WWW, pp 949–958 (2012)

  33. Ma, S., Hu, R., Wang, L., Lin, X., Huai, J.: Fast computation of dense temporal subgraphs. In: ICDE, pp 361–372 (2017)

  34. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD, pp 135–146 (2010)

  35. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1–23 (2016)

    Article  MathSciNet  Google Scholar 

  36. Moody, J.: The importance of relationship timing for diffusion. Soc. Forces 81 (1), 25–56 (2002)

    Article  Google Scholar 

  37. Nicosia, V., Tang, J.K., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying graphs. arXiv:1106.2134 (2011)

  38. Nisar, M.U., Voghoei, S., Ramaswamy, L.: Caching for pattern matching queries in time evolving graphs: challenges and approaches. In: ICDCS, pp 2352–2357 (2017)

  39. Redmond, U., Cunningham, P.: Temporal subgraph isomorphism. In: International Conference on Advances in Social Networks Analysis and Mining, ASONAM, pp 1451–1452 (2013)

  40. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud. In: SIGMOD, pp 505–516 (2013)

  41. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Tools and Algorithms for the Construction and Analysis of Systems, TACAS, pp 426–440 (2006)

    Chapter  Google Scholar 

  42. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think like a vertex” to “think like a graph”. PVLDB 7(3), 193–204 (2013)

    Google Scholar 

  43. Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public transportation networks: a labelling approach. In: SIGMOD, pp 967–982 (2015)

  44. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal graphs. PVLDB 7(9), 721–732 (2014)

    Google Scholar 

  45. Wu, H., Huang, Y., Cheng, J., Li, J., Ke, Y.: Reachability and time-based path queries in temporal graphs. In: ICDE, pp 145–156 (2016)

  46. Xu, Y., Huang, J., Liu, A., Li, Z., Yin, H., Zhao, L.: Time-constrained graph pattern matching in a large temporal graph. In: APWeb-WAIM, pp 100–115 (2017)

  47. Yang, Y., Yan, D., Wu, H., Cheng, J., Zhou, S., Lui, J.C.S.: Diversified temporal subgraph pattern mining. In: SIGKDD, pp 1965–1974 (2016)

  48. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: NSDI, pp 15–28 (2012)

  49. Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. PVLDB 2(1), 886–897 (2009)

    Google Scholar 

  50. Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Answering pattern match queries in large graph databases via graph embedding. VLDB J. 21(1), 97–120 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key R&D Program of China under Grant No. 2018YFB1004003, the 973 Program of China under Grant No. 2015CB352502, the NSFC under Grant No. 61522208, the NSFC-Zhejiang Joint Fund under Grant No. U1609217, and the ZJU-Hikvision Joint Project. Yunjun Gao is the corresponding author of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Trust, Privacy, and Security in Crowdsourcing Computing

Guest Editors: An Liu, Guanfeng Liu, Mehmet A. Orgun, and Qing Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Gao, Y., Qiu, L. et al. Distributed time-respecting flow graph pattern matching on temporal graphs. World Wide Web 23, 609–630 (2020). https://doi.org/10.1007/s11280-019-00674-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00674-0

Keywords

Navigation