Skip to main content
Log in

Multiple-scale cost sensitive decision tree learning

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

The previous cost-sensitive learning methods assume that the (medical) test cost is measured in the same scale with the misclassification cost while minimizing the expected total cost. This paper proposes a general target-resource framework involving multiple kinds of cost scales, which minimize one kind of cost scale (called target cost scale) through controlling the others (called resource cost scales) in given resource budgets. The proposed cost-sensitive learning model also assists in, such as healthcare data classification and bioinformatics analysis, which are practical and desired application for developing a multiple-scale cost-sensitive learning tool. We experimentally evaluated our approach using the biological and medical datasets, and demonstrated that our proposed method worked well on learning decision tree under a given budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blake, C.L.,: UCI Repository of machine learning databases, Irvine, University of California. http://www. ics. uci. edu/~ mlearn/MLRepository. html, (1998)

  2. Charuvaka, A., Rangwala, H.: HierCost: Improving Large Scale Hierarchical Classification with Cost Sensitive Learning. Machine Learning and Knowledge Discovery in Databases, Ecml Pkdd 2015, Pt I, 9284: p. 675–690 (2015)

    Chapter  Google Scholar 

  3. Elkan, C.: The foundations of cost-sensitive learning. in International joint conference on artificial intelligence. Lawrence Erlbaum Associates Ltd. (2001)

  4. Fan, J.P., et al.: Cost-sensitive learning of hierarchical tree classifiers for large-scale image classification and novel category detection. Pattern Recogn. 48(5), 1673–1687 (2015)

    Article  Google Scholar 

  5. Gao, L., et al.: Learning in high-dimensional multimedia data: the state of the art. Multimedia Systems. 23(3), 303–313 (2017)

    Article  Google Scholar 

  6. Greiner, R., Grove, A.J., Roth, D.: Learning cost-sensitive active classifiers. Artif. Intell. 139(2), 137–174 (2002)

    Article  MathSciNet  Google Scholar 

  7. Hu, R.Y., et al.: Graph self-representation method for unsupervised feature selection. Neurocomputing. 220, 130–137 (2017)

    Article  Google Scholar 

  8. Hu, M., et al.: Hashing with angular reconstructive embeddings. IEEE Trans. Image Process. 27(2), 545–555 (2018)

    Article  MathSciNet  Google Scholar 

  9. Jiang, L.X., Qiu, C., Li, C.Q.: A novel minority cloning technique for cost-sensitive learning. Int. J. Pattern Recognit. Artif. Intell. 29(4), 18 (2015)

    Article  Google Scholar 

  10. Lei, C., Zhu X.: Unsupervised feature selection via local structure learning and sparse learning. Multimedia Tools & Applications. https://doi.org/10.1007/s11042-017-5381-7 (2017)

    Article  Google Scholar 

  11. Ling, C.X., et al.: Decision trees with minimal costs. in Proceedings of the twenty-first international conference on Machine learning. ACM (2004)

  12. Liu, M., et al.: Cost-sensitive feature selection by optimizing F-measures. IEEE Trans. Image Process. 27(3), 1323–1335 (2018)

    Article  MathSciNet  Google Scholar 

  13. Mac Aodha, O., Brostow, G.J.: Revisiting Example Dependent Cost-Sensitive Learning with Decision Trees. 2013 Ieee International Conference on Computer Vision (Iccv), 193–200 (2013)

  14. Palacios, A., et al.: Cost-sensitive learning of fuzzy rules for imbalanced classification problems using FURIA. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. 22(5), 643–675 (2014)

    Article  MathSciNet  Google Scholar 

  15. Qin, Z., et al.: Cost-sensitive classification with k-nearest neighbors. in International Conference on Knowledge Science, Engineering and Management. Springer (2013)

  16. Sheng, V.S., et al.: Cost-sensitive learning for defect escalation. Knowl.-Based Syst. 66, 146–155 (2014)

    Article  Google Scholar 

  17. Song, J.K., et al.: Robust hashing with local models for approximate similarity search. Ieee Transactions on Cybernetics. 44(7), 1225–1236 (2014)

    Article  Google Scholar 

  18. Song, J., et al.: Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans. Image Process. 25(11), 4999–5011 (2016)

    Article  MathSciNet  Google Scholar 

  19. Song, J., et al.: Deep and fast: deep learning hashing with semi-supervised graph construction. Image Vis. Comput. 55, 101–108 (2016)

    Article  Google Scholar 

  20. Song, J., et al.: A distance-computation-free search scheme for binary code databases. IEEE Transactions on Multimedia. 18(3), 484–495 (2016)

    Article  Google Scholar 

  21. Song, J.K., et al.: Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recogn. 75, 175–187 (2018)

    Article  Google Scholar 

  22. Wu, T.F., Zhu, S.C.: Learning near-optimal cost-sensitive decision policy for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1013–1027 (2015)

    Article  Google Scholar 

  23. Yang, Y., et al.: Hierarchical Multi-Clue Modelling for POI Popularity Prediction with Heterogeneous Tourist Information. IEEE Transactions on Knowledge and Data Engineering, (2018)

  24. Zhang, S.C.: Cost-sensitive classification with respect to waiting cost. Knowl.-Based Syst. 23(5), 369–378 (2010)

    Article  Google Scholar 

  25. Zhang, J.L., Garcia, J.: Online classifier adaptation for cost-sensitive learning. Neural Computing & Applications. 27(3), 781–789 (2016)

    Article  Google Scholar 

  26. Zhang, S.C., et al.: "Missing is useful": Missing values in cost-sensitive decision trees. IEEE Trans. Knowl. Data Eng. 17(12), 1689–1693 (2005)

    Article  Google Scholar 

  27. Zhang, Y., et al.: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 21(6), 887–896 (2013)

    Article  Google Scholar 

  28. Zhang, Y., et al.: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int. J. Neural Syst. 24(04), 1450013 (2014)

    Article  Google Scholar 

  29. Zhang, S., et al.: Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST). 8(3), 43 (2017)

    Google Scholar 

  30. Zhang, S.C., et al.: Efficient kNN classification with different numbers of nearest neighbors. Ieee Transactions on Neural Networks and Learning Systems. 29(5), 1774–1785 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei C.: Dynamic graph learning for spectral feature selection. Multimedia Tools & Applications. https://doi.org/10.1007/s11042-017-5272-y (2017)

    Article  Google Scholar 

  32. Zheng, W., Zhu, X., Wen, G., Zhu, Y., Yu, H., Gan, J.: Unsupervised feature selection by self-paced learning regularization. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.06.029 (2018)

  33. Zhu, Y.Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 529–540 (2015)

    Article  Google Scholar 

  34. Zhu, X.F., et al.: Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2011)

    Article  Google Scholar 

  35. Zhu, X., et al.: Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn. 45(8), 3003–3016 (2012)

    Article  Google Scholar 

  36. Zhu, X., et al.: Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn. 46(1), 215–229 (2013)

    Article  Google Scholar 

  37. Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2018.2858782 (2018)

  38. Zhu, X.F., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhu, Y., et al.: Early diagnosis of Alzheimer’s disease by joint feature selection and classification on temporally structured support vector machine. in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)

  40. Zhu, Y., et al.: Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)

  41. Zhu, X.F., Li, X.L., Zhang, S.C.: Block-row sparse Multiview multilabel learning for image classification. Ieee Transactions on Cybernetics. 46(2), 450–461 (2016)

    Article  Google Scholar 

  42. Zhu, X., et al.: Graph pca hashing for similarity search. IEEE Transactions on Multimedia. 19(9), 2033–2044 (2017)

    Article  Google Scholar 

  43. Zhu, Y., et al.: A novel dynamic hyper-graph inference framework for computer assisted diagnosis of neuro-diseases. in International Conference on Information Processing in Medical Imaging. Springer (2017)

  44. Zhu, X., et al.: Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Transactions on Big Data. 3(4), 405–414 (2017)

    Article  Google Scholar 

  45. Zhu, X., et al.: Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30(3), 517–529 (2018)

    Article  Google Scholar 

Download references

Funding

This work is partially supported by the China Key Research Program (Grant No: 2016YFB1000905); the Natural Science Foundation of China (Grants No: 61573270 and 61672177); the Project of Guangxi Science and Technology (GuiKeAD17195062); the China “1000-Plan” National Distinguished Professorship; the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011); the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; and the Guangxi “Bagui” Teams for Innovation and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang.

Additional information

This article belongs to the Topical Collection: Special Issue on Deep Mining Big Social Data

Guest Editors: Xiaofeng Zhu, Gerard Sanroma, Jilian Zhang, and Brent C. Munsell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Multiple-scale cost sensitive decision tree learning. World Wide Web 21, 1787–1800 (2018). https://doi.org/10.1007/s11280-018-0619-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-018-0619-5

Keywords

Navigation