Skip to main content
Log in

S-LPM: segmentation augmented light-weighting and progressive meshing for the interactive visualization of large man-made Web3D models

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

With the advent of the era of “big data”, increasing efforts have been focused on how to process large models to improve transmission over the internet and display in a browser, i.e., Web3D technology. Notwithstanding the many new advancements in Web3D technology, because browsers have limited storage capacity and low computational ability, the efficient display of a large model through the net remains a bottleneck problem. This paper proposes a light-weighting visualization framework, called the S-LPM framework, which includes a novel Dijkstra-based mesh segmentation operation and a new voxel-based repetition detection/removal operation to efficiently display large 3D models in a Web browser. The two key geometric operations substantially reduce the amount of data transmitted over the net, which in turn significantly increases the transmission speed. The partially transmitted data are then aligned through transformations to restore the entire original model and display it in the Web browser. The experimental results show that our approach is generally accurate and feasible, and its performance is superior to that of the benchmarking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3D mesh segmentation methodologies for CAD applications [J]. Comput.-Aided Des. Applic. 4(6), 827–841 (2007)

    Article  Google Scholar 

  2. Aleksey, G., Funkhouser, T.: Consistent segmentation of 3D models [J]. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  3. Attene, M., Katz, S., Mortara, M., et al.: Mesh segmentation - a comparative study [C]. IEEE International Conference on Shape Modeling and Applications, pp. 7–7. DBLP (2006)

  4. Cai, K., Wang, W., Chen, Z., et al.: Exploiting repeated patterns for efficient compression of massive models [C]. VRCIA, pp. 145–150. ACM (2009)

  5. Cai, K., Teng, J., Teng, J., et al.: Exploiting repeated patterns for efficient compression of massive models [C]. International Conference on Virtual Reality Continuum and ITS Applications in Industry, pp. 145–150. ACM (2009)

  6. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation [J]. ACM Trans. Graph. 28(3), 1–12 (2009)

    Article  Google Scholar 

  7. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces [C]. Symposium on Interactive 3d Graphics, Si3d 2001, Chapel Hill, Nc, Usa, March, pp. 49–58. DBLP (2001)

  8. Hoppe, H.: Progressive meshes [J]. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques [C], ACM SIGGRAPH ‘96, pp. 99–108 (1996)

  9. Hu, R., Fan, L., Liu, L.: Co-segmentation of 3D shapes via subspace clustering [C]. Comput. Graphics Forum. Blackwell Publishing Ltd, pp. 1703–1713 (2012)

  10. Huang, Q., Koltun, V., Guibas, L.J., et al.: Joint shape segmentation with linear programming [C]. International Conference on Computer Graphics and Interactive Techniques, 30(6) (2011)

  11. Inoue, K., Itoh, T., Yamada, A., Furuhata, T., Shimada, K.: Face clustering of a large-scale CAD model for surface mesh generation [J]. Comput. Aided Des. 33(3), 251–261 (2001)

    Article  Google Scholar 

  12. Isenburg, M., Lindstrom, P., Snoeyink, J.: Streaming compression of triangle meshes [C]. In Proceedings of the Third Eurographics Symposium on Geometry Processing (SGP '05) (2005)

  13. Kalogerakis, E., Chaudhuri, S., Koller, D., et al.: A probabilistic model for component-based shape synthesis [J]. ACM Trans. Graph. 31(31), 1–11 (2012)

    Google Scholar 

  14. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts [J]. ACM Trans. Graph. 22(3), 954–961 (2003)

    Article  Google Scholar 

  15. Katz, S., Leifman, G., Tal, A., et al.: Mesh segmentation using feature point and core extraction [J]. Vis. Comput. 21(8), 649–658 (2005)

    Article  Google Scholar 

  16. Kettner, L.: Using generic programming for “designing a data structure for polyhedral surfaces” [J]. Comput. Geom. 13(1), 65–90(26) (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kreavoy V, Julius D, Sheffer A. Model composition from interchangeable components [C]. Computer Graphics and Applications, 2007 PG'07. 15th Pacific Conference on. IEEE. 129–138 (2007)

  18. Lai, Y., Hu, S., Martin, R., et al.: Rapid and effective segmentation of 3D models using random walks [J]. Comput. Aided Geom. Des. 26(6), 665–679 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, H.S., Liao, H.M., Lin, J., et al.: Visual salience-guided mesh decomposition [J]. IEEE Trans. Multimedia. 9(1), 46–57 (2007)

    Article  Google Scholar 

  20. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering [C]. Pacific Conference on Computer Graphics and Applications, pp. 298–305 (2004)

  21. Liu, X., et al.: Low-rank 3D mesh segmentation and labeling with structure guiding [J]. Comput Graph. 2015, 99–109 (2015)

    Article  Google Scholar 

  22. Meng, M., Xia, J., Luo, J., He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization [J]. Comput. Aided Des. 45(2), 312–320 (2013)

    Article  MathSciNet  Google Scholar 

  23. Mortara, M., Patane, G., Spagnuolo, M., et al.: Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies [J]. JISS, pp. 339–344 (2004)

  24. Saleem, M., Kamdar, M.R., Iqbal, A., Sampath, S., Deus, H.F., Ngonga Ngomo, A.C.: Big linked cancer data: integrating linked TCGA and PubMed [J]. Web Semantics Science Services & Agents on the World Wide Web. 27-28, 34–41 (2014)

    Article  Google Scholar 

  25. Savelonas, M.A., Pratikakis, I., Sfikas, K.: An overview of partial 3D object retrieval methodologies [J]. Multimedia Tools and Applications. 74(24), 11783–11808 (2015)

    Article  Google Scholar 

  26. Shamir, A.: Segmentation and shape extraction of 3D boundary meshes [C]. State of the Art Report Eurographics (2006)

  27. Shikhare, D., Bhakar, S., Mudur, S.P.: Compression of large 3D engineering models using automatic discovery of repeating geometric features [C]. Vision Modeling and Visualization Conference, pp. 233–240. Aka GmbH (2001)

  28. Shlafman, S., et al.: Metamorphosis of polyhedral surfaces using decomposition [J]. Comput.Graphics Forum. 21(3), 219–228 (2002)

    Article  Google Scholar 

  29. Sidi O, Kaick O V, Kleiman Y, et al.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering [J]. ACM Trans. Graph. 30(6), 1–10 (2011)

  30. Theologou, P., Pratikakis, I., Theoharis, T.: A review on 3D object retrieval methodologies using a part-based representation [J]. Comput.-Aided Des. Applic. 11(6), 670–684 (2014)

    Article  Google Scholar 

  31. Theologou, P., Pratikakis, I., Theoharis, T., et al.: A comprehensive overview of methodologies and performance evaluation frameworks in 3D mesh segmentation [J]. Comput. Vis. Image Underst. 135, 49–82 (2015)

    Article  Google Scholar 

  32. Wen L., Xie N, Jia J. Fast accessing Web3D contents using lightweight progressive meshes [J]. Comput. Anim. Virtual Worlds. 27(5), 466–483 (2016)

  33. Xu, K., Li, H., Zhang, H., et al.: Style-content separation by anisotropic part scales [J]. ACM Trans Graph. 29(1), 184 (2010)

  34. Zhang, H., Gao, X., Wu, P., et al.: A cross-media distance metric learning framework based on multi-view correlation mining and matching [J]. Web Semantics Science Services & Agents on the World Wide Web. 19(2), 181–197 (2016)

Download references

Acknowledgments

The authors appreciate the comments and suggestions of all anonymous reviewers, whose comments helped significantly improve this paper. This work is supported by the Fundamental Research Funds for the Central Universities in China (2100219066) and the Key Fundamental Research Funds for the Central Universities in China (0200219153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyuan Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Tang, K. & Jia, J. S-LPM: segmentation augmented light-weighting and progressive meshing for the interactive visualization of large man-made Web3D models. World Wide Web 21, 1425–1448 (2018). https://doi.org/10.1007/s11280-018-0610-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-018-0610-1

Keywords

Navigation