Advertisement

Differential private collaborative Web services QoS prediction

  • An Liu
  • Xindi Shen
  • Zhixu Li
  • Guanfeng Liu
  • Jiajie Xu
  • Lei Zhao
  • Kai Zheng
  • Shuo Shang
Article
Part of the following topical collections:
  1. Special Issue on Web and Big Data

Abstract

Collaborative Web services QoS prediction has proved to be an important tool to estimate accurately personalized QoS experienced by individual users, which is beneficial for a variety of operations in the service ecosystem, such as service selection, composition and recommendation. While a number of achievements have been attained on the study of improving the accuracy of collaborative QoS prediction, little work has been done for protecting user privacy in this process. In this paper, we propose a privacy-preserving collaborative QoS prediction framework which can protect the private data of users while retaining the ability of generating accurate QoS prediction. We introduce differential privacy, a rigorous and provable privacy model, into the process of collaborative QoS prediction. We first present DPS, a method that disguises a user’s observed QoS values by applying differential privacy to the user’s QoS data directly. We show how to integrate DPS with two representative collaborative QoS prediction approaches. To improve the utility of the disguised QoS data, we present DPA, another QoS disguising method which first aggregates a user’s QoS data before adding noise to achieve differential privacy. We evaluate the proposed methods by conducting extensive experiments on a real world Web services QoS dataset. Experimental results show our approach is feasible in practice.

Keywords

Web services Collaborative QoS prediction Privacy-preserving 

Notes

Acknowledgments

Research reported in this publication was partially supported Natural Science Foundation of China (Grant Nos. 61572336, 61572335, 61402313)

References

  1. 1.
    Berlioz, A., Friedman, A., Kaafar, M.A., Boreli, R., Berkovsky, S.: Applying differential privacy to matrix factorization. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 107–114. ACM (2015)Google Scholar
  2. 2.
    Canny, J.: Collaborative filtering with privacy. In: 2002. Proceedings 2002 IEEE Symposium on Security and Privacy, pp. 45–57. IEEEGoogle Scholar
  3. 3.
    Chen, X., Zheng, Z., Liu, X., Huang, Z., Sun, H.: Personalized qos-aware Web service recommendation and visualization. IEEE Trans. Serv. Comput. 6(1), 35–47 (2013)CrossRefGoogle Scholar
  4. 4.
    Ding, Z., Yang, B., Gu̇ting, R.H., Li, Y.: Network-matched trajectory-based moving-object database: Models and applications. IEEE Trans. Intell. Transp. Syst. 16 (4), 1918–1928 (2015)CrossRefGoogle Scholar
  5. 5.
    Ding, Z., Yang, B., Chi, Y., Guo, L.: Enabling smart transportation systems: A parallel spatio-temporal database approach. IEEE Trans. Comput. 65(5), 1377–1391 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19. Springer (2008)Google Scholar
  7. 7.
    Dwork, C.: Differential privacy encyclopedia of cryptography and security (2011)Google Scholar
  8. 8.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography Conference, pp. 265–284. Springer (2006)Google Scholar
  9. 9.
    Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommendations efficiently using homomorphic encryption and data packing. IEEE Trans. Inf. Forensics Secur. 7(3), 1053–1066 (2012)CrossRefGoogle Scholar
  10. 10.
    Fletcher, K.K., Liu, X.F.: A collaborative filtering method for personalized preference-based service recommendation. In: IEEE International Conference on Web Services (ICWS), pp. 400–407. IEEE (2015)Google Scholar
  11. 11.
    Gentry, C.: A fully homomorphic encryption scheme. PhD thesis Stanford University (2009)Google Scholar
  12. 12.
    Guerraoui, R., Kermarrec, A.-M., Patra, R., Taziki, M.: D 2 p: distance-based differential privacy in recommenders. Proc. VLDB Endowment 8(8), 862–873 (2015)CrossRefGoogle Scholar
  13. 13.
    Guo, C., Jensen, C.S., Yang, B.: Towards total traffic awareness. SIGMOD Rec. 43(3), 18–23 (2014)CrossRefGoogle Scholar
  14. 14.
    Guo, C., Yang, B., Andersen, O., Jensen, C.S., Ecosky, K.T.: Reducing vehicular environmental impact through eco-routing. In: ICDE, pp. 1412–1415 (2015)Google Scholar
  15. 15.
    Jorgensen, Z., Yu, T.: A privacy-preserving framework for personalized, social recommendations. In: EDBT, pp. 571–582 (2014)Google Scholar
  16. 16.
    Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. Inproceedings of the ACM SIGMOD International Conference on Management of data, pp. 193–204. ACM (2011)Google Scholar
  17. 17.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: 2007. ICDE 2007. IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2007)Google Scholar
  18. 18.
    Li, L., Liu, A., Li, Q., Liu, G., Li, Z.: Privacy-preserving collaborative Web services qos prediction via yao’s garbled circuits and homomorphic encryption. J. Web Eng. 15(3-4), 203–225 (2016)Google Scholar
  19. 19.
    Liu, A., Liu, H., Li, Q., Huang, L.-S., Xiao, M.-J.: Constraints-aware scheduling for transactional services composition. J. Comput. Sci. Technol. 24(4), 638–651 (2009)CrossRefGoogle Scholar
  20. 20.
    Liu, A., Li, Q., Huang, L., Xiao, M.: Facts: A framework for fault-tolerant composition of transactional Web services. IEEE Trans. Serv. Comput. 3(1), 46–59 (2010)CrossRefGoogle Scholar
  21. 21.
    Liu, A., Li, Q., Huang, L., Wen, S.: Shapley value based impression propagation for reputation management in Web service composition. In: 2012 IEEE 19th International Conference on Web Services, pp. 58–65. Honolulu (2012)Google Scholar
  22. 22.
    Liu, A., Li, Q., Huang, L., Ying, S., Xiao, M.: Coalitional game for community-based autonomous Web services cooperation. IEEE Trans. Serv. Comput. 6(3), 387–399 (2013)CrossRefGoogle Scholar
  23. 23.
    Liu, A., Li, Q., Zhou, X., Li, L., Liu, G., Gao, Y.: Rating propagation in Web services reputation systems: A fast shapley value approach. In: Database Systems for Advanced Applications - 19th International Conference, DASFAA 2014, Bali, 2014. Proceedings, Part I, pp 466–480 (2014)Google Scholar
  24. 24.
    Liu, A., Zheng, K., Li, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity computation on encrypted trajectory data. In: IEEE 31st International Conference on Data Engineering (ICDE), pp. 66–77. IEEE (2015)Google Scholar
  25. 25.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., system, R. Jurdak.: Bounded quadrant Error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)Google Scholar
  26. 26.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl. Data Eng. 28(11), 2827–2841 (2016)CrossRefGoogle Scholar
  27. 27.
    Liu, X., Liu, A., Zhang, X., Li, Z., Liu, G., Zhao, L., Zhou, X.: When differential privacy meets randomized perturbation: A hybrid approach for privacy-preserving recommender system. In: International Conference on Database Systems for Advanced Applications, pp. 576–591. Springer (2017)Google Scholar
  28. 28.
    Liu, A., Li, Z., Liu, G., Zheng, K., Zhang, M., Li, Q., Zhang, X.: Privacy-preserving task assignment in spatial crowdsourcing. J. Comput. Sci. Technol. 32(5), 905–918 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica (2017)Google Scholar
  30. 30.
    Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommendations: accurate or private. Proc. VLDB Endowment 4(7), 440–450 (2011)CrossRefGoogle Scholar
  31. 31.
    McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 19–30. ACM (2009)Google Scholar
  32. 32.
    McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM (2009)Google Scholar
  33. 33.
    Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in neural information processing systems, pp. 1257–1264 (2008)Google Scholar
  34. 34.
    Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-preserving matrix factorization. In: Proceedings of the ACM SIGSAC conference on Computer & communications security, pp. 801–812. ACM (2013)Google Scholar
  35. 35.
    Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: IEEE Symposium on Security and Privacy (SP), pp. 334–348. IEEE (2013)Google Scholar
  36. 36.
    Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: 2003. ICDM 2003. Third IEEE International Conference on Data Mining, pp. 625–628. IEEE (2003)Google Scholar
  37. 37.
    Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: Proceedings of the 15th International Conference on Extending Database Technology, pp. 156–167. ACM (2012)Google Scholar
  38. 38.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Finding traffic-aware fastest paths in spatial networks. In: SSTD, pp. 128–145 (2013)Google Scholar
  39. 39.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in spatial networks. In: MDM, pp. 247–250 (2013)Google Scholar
  40. 40.
    Shang, S., Ding, R., Zheng, K., Jensen, C. S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)CrossRefGoogle Scholar
  41. 41.
    Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)CrossRefGoogle Scholar
  42. 42.
    Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters in spatial networks. IEEE Trans. Knowl. Data Eng. 27(6), 1505–1518 (2015)CrossRefGoogle Scholar
  43. 43.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J.-R., Kalnis, P.: Collective travel planning in spatial networks. IEEE Trans. Knowl. Data Eng. 28(5), 1132–1146 (2016)CrossRefGoogle Scholar
  44. 44.
    Shang, S., Guo, D., Liu, J., Zheng, K., Wen, J.: Finding regions of interest using location based social media. Neurocomputing 173, 118–123 (2016)CrossRefGoogle Scholar
  45. 45.
    Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE Trans. Knowl. Data Eng. 29(7), 1549–1562 (2017)CrossRefGoogle Scholar
  46. 46.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)Google Scholar
  47. 47.
    Shen, Y., Jin, H.: Epicrec: Towards practical differentially private framework for personalized recommendation. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 180–191. ACM (2016)Google Scholar
  48. 48.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tang, M., Jiang, Y., Liu, J., Liu, X.: Location-aware collaborative filtering for qos-based service recommendation. In: IEEE 19th International Conference on Web Services (ICWS), pp. 202–209. IEEE (2012)Google Scholar
  50. 50.
    Xie, K., Deng, K., Shang, S., Zhou, X., Zheng, K.: Finding alternative shortest paths in spatial networks. ACM Trans. Database Syst. 37(4), 29:1–29:31 (2012)CrossRefGoogle Scholar
  51. 51.
    Xie, Q., Shang, S., Yuan, B., Pang, C., Zhang, X.: Local correlation detection with linearity enhancement in streaming data. In: CIKM, pp. 309–318 (2013)Google Scholar
  52. 52.
    Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: ICDE, pp. 136–147 (2014)Google Scholar
  53. 53.
    Yang, B., Dai, J., Guo, C., Jensen, C.S.: Pace: A PAth-CEntric paradigm for stochastic path finding. VLDB Journal online first (2017)Google Scholar
  54. 54.
    Yao, L., Sheng, Q.Z., Segev, A., Yu, J.: Recommending Web services via combining collaborative filtering with content-based features. In: 2013 IEEE 20th International Conference on Web Services (ICWS), pp. 42–49. IEEE (2013)Google Scholar
  55. 55.
    Yu, Q., Zheng, Z., Wang, H.: Trace norm regularized matrix factorization for service recommendation. In: IEEE 20th International Conference on Web Services (ICWS), pp. 34–41. IEEE (2013)Google Scholar
  56. 56.
    Yu, D., Liu, Y., Xu, Y., Yin, Y.: Personalized qos prediction for Web services using latent factor models. In: IEEE International Conference on Services Computing (SCC), pp. 107–114. IEEE (2014)Google Scholar
  57. 57.
    Zhang, S., Ford, J., Makedon, F.: Deriving private information from randomly perturbed ratings. In: Proceedings of the SIAM International Conference on Data Mining, pp. 59–69. SIAM (2006)Google Scholar
  58. 58.
    Zhang, Q., Ding, C.: Collaborative filtering based service ranking using invocation histories. In: 2011 IEEE International Conference on Web Services (ICWS). IEEE, pp 195–202 (2011)Google Scholar
  59. 59.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: a collaborative filtering based Web service recommender system. In: 2009. ICWS 2009. IEEE International Conference on Web Services, pp. 437–444. IEEE (2009)Google Scholar
  60. 60.
    Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed qos evaluation for real-world Web services. In: 2010 IEEE International Conference on Web Services (ICWS), pp. 83–90. IEEE (2010)Google Scholar
  61. 61.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware Web service recommendation by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)CrossRefGoogle Scholar
  62. 62.
    Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE, pp. 230–241 (2013)Google Scholar
  63. 63.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories. In: ICDE, pp. 242–253 (2013)Google Scholar
  64. 64.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative Web service qos prediction via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3), 289–299 (2013)CrossRefGoogle Scholar
  65. 65.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories, vol. 26 (2014)Google Scholar
  66. 66.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: ICDE, pp. 423–434 (2015)Google Scholar
  67. 67.
    Zhu, J., He, P., Zheng, Z., Lyu, M.R.: A privacy-preserving qos prediction framework for Web service recommendation. In: IEEE International Conference on Web Services (ICWS), pp. 241–248. IEEE (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • An Liu
    • 1
  • Xindi Shen
    • 1
  • Zhixu Li
    • 1
  • Guanfeng Liu
    • 1
  • Jiajie Xu
    • 1
  • Lei Zhao
    • 1
  • Kai Zheng
    • 2
  • Shuo Shang
    • 3
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations