Advertisement

World Wide Web

, Volume 21, Issue 3, pp 687–712 | Cite as

Continuous monitoring of range spatial keyword query over moving objects

  • Chaluka Salgado
  • Muhammad Aamir Cheema
  • Mohammed Eunus Ali
Article
  • 183 Downloads

Abstract

In this paper, we propose an efficient solution for processing continuous range spatial keyword queries over moving spatio-textual objects (namely, CRSK-mo queries). Major challenges in efficient processing of CRSK-mo queries are as follows: (i) the query range is determined based on both spatial proximity and textual similarity; thus a straightforward spatial proximity based pruning of the search space is not applicable as any object far from a query location with a high textual similarity score can still be the answer (and vice versa), (ii) frequent location updates may invalidate a query result, and thus require frequent re-computing of the result set for any object updates. To address these challenges, the key idea of our approach is to exploit the spatial and textual upper bounds between queries and objects to form safe zones (at the client-side) and buffer regions (at the server-side), and then use these bounds to quickly prune objects and queries through smart in-memory data structures. We conduct extensive experiments with a synthetic dataset that verify the effectiveness and efficiency of our proposed algorithm.

Keywords

Spatial keyword queries Continuous range queries Moving objects Safe zone Location based services 

Notes

Acknowledgments

Muhammad Aamir Cheema is supported by ARC DE130101002 and DP130103405.

References

  1. 1.
    Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cai, Y., Hua, K.A., Cao, G., Xu, T.: Real-time processing of range-monitoring queries in heterogeneous mobile databases. IEEE Trans. Mob. Comput. 5(7), 931–942 (2006)CrossRefGoogle Scholar
  3. 3.
    Cary, A., Wolfson, O., Rishe, N.: Efficient and scalable method for processing top-k spatial boolean queries. In: International Conference on Scientific and Statistical Database Management, pp. 87–95. Springer (2010)Google Scholar
  4. 4.
    Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to continuously monitoring reverse knn. Proc. VLDB Endow. 2(1), 1138–1149 (2009)CrossRefGoogle Scholar
  5. 5.
    Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to continuously monitoring reverse knn. PVLDB 2(1), 1138–1149 (2009) [http://www.vldb.org/pvldb/2/vldb09-720.pdf]Google Scholar
  6. 6.
    Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitoring of distance-based range queries. IEEE Trans. Knowl. Data Eng. 23(8), 1182–1199 (2011)CrossRefGoogle Scholar
  7. 7.
    Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitoring of distance-based range queries. IEEE Trans. Knowl. Data Eng. 23(8), 1182–1199 (2011). doi: 10.1109/TKDE.2010.246 CrossRefGoogle Scholar
  8. 8.
    Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest neighbors queries in euclidean space and in spatial networks. VLDB J. 21(1), 69–95 (2012). doi: 10.1007/s00778-011-0235-9 CrossRefGoogle Scholar
  9. 9.
    Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: A safe zone based approach for monitoring moving skyline queries. In: Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, pp. 275–286. Genoa (2013). doi: 10.1145/2452376.2452409
  10. 10.
    Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: Proceedings of the VLDB Endowment, vol. 6, pp. 217–228. VLDB Endowment (2013)Google Scholar
  11. 11.
    Chen, L., Cong, G., Cao, X., Tan, K.L.: Temporal spatial-keyword top-k publish/subscribe. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 255–266. IEEE (2015)Google Scholar
  12. 12.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc. VLDB Endow. 2(1), 337–348 (2009)CrossRefGoogle Scholar
  13. 13.
    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008, pp. 656–665. IEEE (2008)Google Scholar
  14. 14.
    Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries on moving objects in a mobile system. In: Advances in Database Technology-EDBT 2004, pp. 67–87. Springer (2004)Google Scholar
  15. 15.
    Guo, L., Chen, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Elaps: An efficient location-aware pub/sub system. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 1504–1507. IEEE (2015)Google Scholar
  16. 16.
    Guo, L., Shao, J., Aung, H.H., Tan, K.L.: Efficient continuous top-k spatial keyword queries on road networks. GeoInformatica 19(1), 29–60 (2015)CrossRefGoogle Scholar
  17. 17.
    Guo, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Location-aware pub/sub system: When continuous moving queries meet dynamic event streams. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 843–857. ACM (2015)Google Scholar
  18. 18.
    Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over moving objects. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp. 479–490. ACM (2005)Google Scholar
  19. 19.
    Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.L.: A location-aware publish/subscribe framework for parameterized spatio-textual subscriptions. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 711–722. IEEE (2015)Google Scholar
  20. 20.
    Huang, W., Li, G., Tan, K.L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp. 932–941. ACM (2012)Google Scholar
  21. 21.
    Jung, H., Kim, Y.S., Chung, Y.D.: Qr-tree: An efficient and scalable method for evaluation of continuous range queries. Inform. Sci. 274, 156–176 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 802–810. ACM (2013)Google Scholar
  23. 23.
    Li, Z., Lee, K.C., Zheng, B., Lee, W.C., Lee, D., Wang, X.: Ir-tree: An efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23 (4), 585–599 (2011)CrossRefGoogle Scholar
  24. 24.
    Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous queries in spatio-temporal databases. In: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pp. 623–634. ACM (2004)Google Scholar
  25. 25.
    Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp. 634–645. ACM (2005)Google Scholar
  26. 26.
    Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans Comput 51(10), 1124–1140 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: Advances in Spatial and Temporal Databases, pp. 205–222. Springer (2011)Google Scholar
  28. 28.
    Ṡaltenis, S.: Indexing the positions of continuously moving objects. In: Encyclopedia of GIS, pp. 538–543. Springer (2008)Google Scholar
  29. 29.
    Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 790–801. VLDB Endowment (2003)Google Scholar
  30. 30.
    Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: Ap-tree: Efficiently support continuous spatial-keyword queries over stream. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 1107–1118. IEEE (2015)Google Scholar
  31. 31.
    Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 541–552. IEEE (2011)Google Scholar
  32. 32.
    Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng. 24(10), 1889–1903 (2012)CrossRefGoogle Scholar
  33. 33.
    Wu, K.L., Chen, S.K., Yu, P.S.: On incremental processing of continual range queries for location-aware services and applications. In: The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 261–269. IEEE (2005)Google Scholar
  34. 34.
    Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: 21st International Conference on Data Engineering (ICDE’05), pp. 631–642. IEEE (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Monash UniversityMelbourneAustralia
  2. 2.Department of Computer Science and EngineeringBangladesh University of Engineering and Technology (BUET)DhakaBangladesh

Personalised recommendations