Energy Efficient Clustering Algorithm Based on Particle Swarm Optimization Technique for Wireless Sensor Networks


Maximizing network lifetime in wireless sensor networks is one of the critical issues, particularly for transmitting multimedia data. The wireless sensor network's lifetime is directly linked to energy conservation at each sensor node in the network. Clustering is the most energy-efficient technique for saving energy in sensor networks. The appropriate method for selecting the cluster head is still lagging. The sink node divides the deployment region into the optimal number of sub-regions depending upon its placement in the sensing region. The initial cluster heads are chosen randomly in each region, and this is not an energy-efficient method. The sink node adopts particle swarm optimization technique to select the cluster head in each region efficiently. The chosen cluster head in each region advertises its role to member nodes. Then, the cluster head node is chosen forms the new cluster. PSO optimization technique with the optimization parameters of clustering coefficient, the sensor node's remaining energy, and the distance from the sink and the head of the cluster to the members is adopted to select the cluster head sensor node. The cluster head spends most of its energy aggregating and transferring the data to the sink node. For unloading the cluster head responsibilities, the assistant cluster head and super cluster head are selected for the aggregation and transfer of data, respectively. The proposed energy efficient cluster head selection algorithm has improved the network lifetime by an average of 65 percent better than the existing clustering algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. 2.

    Shaikh, R. A. J., Naidu, H., Kokate, P. A. (2021). Next-generation wsn for environmental monitoring employing big data analytics, machine learning and artificial intelligence. In Evolutionary computing and mobile sustainable networks, pp. 181–196.

  3. 3.

    Onasanya, A., Lakkis, S., Elshakankiri, M., (2019). Implementing iot/wsn based smart saskatchewan healthcare system. Wireless Networks.

  4. 4.

    Gameil, M., & Gaber, T. (2020). Wireless sensor networks-based solutions for cat- tle health monitoring: A survey. In Proceedings of the international conference on advanced intelligent systems and informatics 2019, pp. 779–788.

  5. 5.

    Al Qundus, J., Dabbour, K., Gupta, S., Meissonier, R., Paschke, A. (2020). Wireless sensor network for ai-based flood disaster detection.

  6. 6.

    Kumar, N., & Sharma B. (2020) Opportunities and challenges with WSN’s in smart technologies: A smart agriculture perspective, pp. 441–463.

  7. 7.

    Thakur, D., Kumar, Y., Kumar, A., Singh, P. K. (2019). Applicability of wireless sensor networks in precision agriculture: A review. Wireless Personal Communications, 107(1):471–512.

  8. 8.

    Patil, D., Thanuja, T. C., & Melinamath, B. C. (2019) Air pollution monitoring system using wireless sensor network (wsn). In Data management, analytics and innovation, pp. 391–400.

  9. 9.

    Al-Dahoud, A., Fezari, M., Mehamdia, H. (2020). Water quality monitoring system using wsn in Tanga Lake. In Engineering in dependability of computer systems and networks, pp. 1–9.

  10. 10.

    Tao, K., Chang, H., Wu, J., Tang, L., Miao, J. (2019). MEMS/NEMS-enabled energy harvesters as self-powered sensors, pp. 1–30.

  11. 11.

    Tabatabaei, S., Rajaei, A., & Rigi, A. M. (2019). A novel energy-aware clustering method via lion pride optimizer algorithm (lpo) and fuzzy logic in wireless sensor networks (wsns). Wireless Personal Communications, pp. 1803–1825.

  12. 12.

    Jassbi, S. J., & Moridi, E. Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: Ftec. Wireless Personal Communications, pp. 373–391.

  13. 13.

    Zeb, A., Islam, A. K. M. M., Al Mamoon, M. Z. I., Man-soor, N., Baharun, S., Katayama, Y., Komaki, S. (2016). Clustering analysis in wireless sensor networks: The ambit of performance metrics and schemes taxonomy. International Journal of Distributed Sensor Networks, 12(7):4979142.

  14. 14.

    Loganathan, S., Arumugam, J. (2020). Clustering algorithms for wireless sensor networks survey. Sensor Letters, 18:143–149.

  15. 15.

    El Khediri, S., Nasri, N., Khan, R. U., & Kachouri, A. (2020).An improved energy efficient clustering protocol for increasing the life time of wireless sensor networks. Wireless Personal Communications.

  16. 16.

    Sureshkumar, S., & Sabena, S. (2020). Fuzzy-based secure authentication and clustering algorithm for improving the energy efficiency in wireless sensor networks. Wireless Personal Communications 112, 1517–1536.

  17. 17.

    Neamatollahi, P., Abrishami, S., Naghibzadeh, M., Yaghmaee Moghaddam, M. H., Younis, O. (2018). Hierarchical clustering-task scheduling policy in cluster-based wireless sensor networks. IEEE Transactions on Industrial Informatics, 14(5):1876–1886.

  18. 18.

    Pachlor, R., & Shrimankar, D. (2018). Larch: A cluster-head rotation approach for sensor networks. IEEE Sensors Journal, 18(23), 9821–9828.

    Article  Google Scholar 

  19. 19.

    Li, H., & Wu, Q. (2012) A clustering routing algorithm in wireless sensor netwroks. In 2012 IEEE 2nd international conference on cloud computing and intelligence systems, vol 03, pp. 1057–1061.

  20. 20.

    Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., et al. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267–279.

    Article  Google Scholar 

  21. 21.

    Parvin, M., & Chandra, A. (2020). Quasi-dynamic load balanced clustering protocol for energy efficient wireless sensor networks. Wireless Personal Communications, 111(3), 1589–1605.

    Article  Google Scholar 

  22. 22.

    Zakariayi, S. (2019). DEHCIC: A distributed energy-aware hexagon based clustering algorithm to improve coverage in wireless sensor networks Babaie, Shahram. Peer-to-Peer Networking and Applications 12(4): 689–704.

  23. 23.

    Gambhir, A., Payal, A., Arya, R. (2020). Comparative analysis of sep, i-sep, leach and pso-based clustering protocols in wsn. In Soft computing: theories and applications, pp. 609–615.

  24. 24.

    Panchikattil, S. S. & Pete, D. J. (2020). Spatial clustering with sequential ch selection for energy-efficient wsn. In Proceedings of international conference on wireless communication, pp. 289–298.

  25. 25.

    Loganathan, S., & Arumugam, J. (2020). Energy centroid clustering algorithm to enhance the network lifetime of wireless sensor networks. Multidimensional Systems and Signal Processing, 31, 829–856.

    Article  Google Scholar 

  26. 26.

    Wang, S., Zhang, H., Zhang, Y., Zhou, A., & Wu, P. (2019). A spectral clustering-based multi- source mating selection strategy in evolutionary multi-objective optimization. IEEE Access, 7, 131851–131864.

    Article  Google Scholar 

  27. 27.

    Vijayalakshmi, P., & Anandan, K. (2019). A multi objective tabu particle swarm optimization for effective cluster head selection in wsn. Cluster Computing, 22(5), 12275–12282.

    Article  Google Scholar 

  28. 28.

    Istwal, Y., & Verma, S. (2019). Dual cluster head routing protocol with super node in wsn. Wireless Personal Communications, 104, 01.

    Article  Google Scholar 

  29. 29.

    Joloudari, J. H., Saadatfar, H., & Hosseini, S. M. (2019). A new algorithm for super cluster head selection for wireless sensor networks. International Journal of Wireless Information Networks, 26(2), 113–130.

    Article  Google Scholar 

  30. 30.

    Shankar, A., Sivakumar, N., Sivaram, M., Ambikapathy, A., Nguyen, T. K., Vigneswaran, D. (2020). Increasing fault tolerance ability and network lifetime with clustered pollination in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing.

  31. 31.

    Haseeb, K., Abu Bakar, K., Ahmed, A., Darwish, T., & Ahmed, I. (2017). Wecrr: Weighted energy-efficient clustering with robust routing for wireless sensor networks. Wireless Personal Communications, 97(1), 695–721.

    Article  Google Scholar 

  32. 32.

    Bhattacharjya, K., Alam, S., De, D. (2019). Cuwsn: Energy efficient routing protocol selection for cluster based underwater wireless sensor network. Microsystem Technologies.

  33. 33.

    Heinzelman, W. R., Chandrakasan, A., Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, vol. 2, p. 10.

  34. 34.

    Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4):660–670.

  35. 35.

    Behera, T. M., Samal, U. C., & Mohapatra, S. K. (2018). Energy-efficient modified leach protocol for iot application. IET Wireless Sensor Systems, 8(5), 223–228.

    Article  Google Scholar 

  36. 36.

    Guo, P., Jiang, T., Zhang, K., & Chen, H. (2009). Clustering algorithm in initialization of multi-hop wireless sensor networks. IEEE Transactions on Wireless Communications, 8(12), 5713–5717.

    Article  Google Scholar 

  37. 37.

    Abushiba, W., Johnson, P., Alharthi, S.,& Wright, C. (2017). An energy efficient and adaptive clustering for wireless sensor network (ch-leach) using leach protocol. pp. 50–54.

  38. 38.

    Bsoul, M., Al-Khasawneh, A., Abdallah, A. E., Abdallah, E. E., & Obeidat, I. (2013). An energy-efficient threshold-based clustering protocol for wireless sensor networks. Wireless Personal Communications, 70(1), 99–112.

    Article  Google Scholar 

  39. 39.

    Abidi, W., & Ezzedine, T. (2020). Effective clustering protocol based on network division for heterogeneous wireless sensor networks. Computing, 102, 02.

    MathSciNet  Article  Google Scholar 

  40. 40.

    Moridi, E., Haghparast, M., Hosseinzadeh, M., & Jassbi, S. J. (2020). Novel fault-tolerant clustering-based multipath algorithm (ftcm) for wireless sensor net- works. Telecommunication Systems, 74, 08.

    Article  Google Scholar 

  41. 41.

    Rani, S., Ahmed, S. H., & Rastogi, R. (2020). Dynamic clustering approach based on wireless sensor networks genetic algorithm for iot applications. Wireless Networks, 26, 05.

    Google Scholar 

  42. 42.

    Singh, H., & Singh, D. (2019). An energy efficient scalable clustering protocol for dynamic wireless sensor networks. Wireless Personal Communications.

  43. 43.

    Tabibi, S., & Ghaffari, A. (2018). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104, 09.

    Google Scholar 

  44. 44.

    Latiff, N. M. A., Tsimenidis, C. C., Sharif, B. S. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In 2007 IEEE 18th international symposium on personal, indoor and mobile radio communications, pp. 1–5.

  45. 45.

    Zhang, J., & Chen, J. (2019). An adaptive clustering algorithm for dynamic heterogeneous wireless sensor networks. Wireless Networks, 25(1), 455–470.

    Article  Google Scholar 

  46. 46.

    Tomar, M. S., & Shukla, P. K. (2019). Energy efficient gravitational search algorithm and fuzzy based clustering with hop count based routing for wireless sensor network. Multimedia Tools and Applications, 78(19), 27849–27870.

    Article  Google Scholar 

  47. 47.

    Mood, S. E., & Javidi, M. M. (2019). Energy-efficient clustering method for wireless sensor networks using modified gravitational search algorithm. Evolving Systems.

Download references

Author information



Corresponding author

Correspondence to Sathyapriya Loganathan.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loganathan, S., Arumugam, J. Energy Efficient Clustering Algorithm Based on Particle Swarm Optimization Technique for Wireless Sensor Networks. Wireless Pers Commun (2021).

Download citation


  • Particle swarm optimization
  • Clustering
  • Network lifetime
  • Energy efficient
  • Wireless sensor networks
  • Energy aware