Design of UWB MIMO Antenna to Reduce the Mutual Coupling Using Defected Ground Structure


A novel compact monopole UWB antenna is described and analyzed using defect in ground plane (DGS). This MIMO design has an area of 60 × 35 mm2 with total size of 2100 mm2 which maintained between the square type patches seperation is 0.05 λ0. The current design achieved tri-band frequencies at 3.5, 4.8 and 9.0 GHz due to introducing arcs at the edges of square type patches. For the impedance bandwidth of the design covers an average peak gain of radaitor is 5.04 dBi with a little-bit variations in the current design is ± 1.20 dBi. The measured Impedance Bandwidths of the MIMO design are 1000 MHz (3.0–4.0 GHz), 1300 MHz (4.3–5.6 GHz) and 1100 MHz (8.4–9.5 GHz) covered the frequency range from 2.0 to 10.0 GHz. These frequencies covered the applications of WLAN, bluetooth and ultra-wide band which maintained VSWR ≤ 2. The proposed structure resembles a omnidirectional radaition patternswith narrow compact sizeat the resonant band of frequencies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Srivastava, K., et al. (2020). "Design and packaging of ultra-wideband multiple-input-multiple-output/diversity antenna for wireless applications. International Journal of RF and Microwave Computer-Aided Engineering, 30(10), e22357.

    Article  Google Scholar 

  2. 2.

    Chandel, R., Gautam, A. K., & Rambabu, K. (2018). Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 66(4), 1677–1684.

    Article  Google Scholar 

  3. 3.

    Liu, F., et al. (2019). Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Transactions on Antennas and Propagation, 68(1), 552–557.

    Article  Google Scholar 

  4. 4.

    Iqbal, A., Saraereh, O. A., & Jaiswal, S. K. (2017). Maple leaf shaped UWB monopole antenna with dual band notch functionality. Progress in Electromagnetics Research, 71, 169–175.

    Article  Google Scholar 

  5. 5.

    Jiang, T., Jiao, T., & Li, Y. (2018). A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures. Applied Computational Electromagnetics Society Journal, 33(3), 305–311.

    Google Scholar 

  6. 6.

    Zhai, G., Chen, Z. N., & Qing, X. (2015). Enhanced isolation of a closely spaced four-element MIMO antenna system using metamaterial mushroom. IEEE Transactions on Antennas and Propagation, 63(8), 3362–3370.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chandel, R., & Gautam, A. K. (2016). Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristic. Electronics Letters, 52(5), 336–338.

    Article  Google Scholar 

  8. 8.

    Khan, M. S., et al. (2016). A compact CSRR-enabled UWB diversity antenna. IEEE Antennas and Wireless Propagation Letters, 16, 808–812.

    Article  Google Scholar 

  9. 9.

    Thummaluru, S. R., & Chaudhary, R. K. (2017). Mu-negative metamaterial filter-based isolation technique for MIMO antennas. Electronics Letters, 53(10), 644–646.

    Article  Google Scholar 

  10. 10.

    Kim, J., et al. (2013). Four-channel MIMO antenna for WLAN using hybrid structure. Electronics Letters, 49(14), 857–858.

    Article  Google Scholar 

  11. 11.

    Baskey, H. B., Johari, E., & Akhtar, M. J. (2017). Metamaterial structure integrated with a dielectric absorber for wideband reduction of antennas radar cross section. IEEE Transactions on Electromagnetic Compatibility, 59(4), 1060–1069.

    Article  Google Scholar 

  12. 12.

    Ghimire, J., Choi, K. W., & Choi, D.-Y. (2019). Bandwidth enhancement and mutual coupling reduction using a notch and a parasitic structure in a UWB-MIMO antenna. International Journal of Antennas and Propagation.

    Article  Google Scholar 

  13. 13.

    Jehangir, S. S. (2017). MS Sharawi (2017) A miniaturized UWB biplanar Yagi-like MIMO antenna system. IEEE Antennas and Wireless Propagation Letters, 16, 2320–2323.

    Article  Google Scholar 

  14. 14.

    Yang, P., et al. (2016). Microstrip phased-array in-band RCS reduction with a random element rotation technique. IEEE Transactions on Antennas and Propagation, 64(6), 2513–2518.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Mao, C. X., et al. (2013). Design and investigation of closely-packed diversity UWB slot-antenna with high isolation. Progress in Electromagnetics Research, 41, 13–25.

    Article  Google Scholar 

  16. 16.

    Saurabh, A. K., & Meshram, M. K. (2020). Compact sub-6 GHz 5G-multiple-input-multiple-output antenna system with enhanced isolation. International Journal of RF and Microwave Computer-Aided Engineering, 30, e22246.

    Article  Google Scholar 

  17. 17.

    Yu, K., Li, Y., & Liu, X. (2018). Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures. Applied Computational Electromagnetics Society Journal, 33(7), 758–763.

    Google Scholar 

  18. 18.

    Rao, P. K., & Mishra, R. (2020). Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application. IETE Journal of Research.

    Article  Google Scholar 

  19. 19.

    Hasan, M. N., Chu, S., & Bashir, S. (2019). A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications. Microwave and Optical Technology Letters, 61(9), 2141–2149.

    Article  Google Scholar 

  20. 20.

    Deng, J. Y., Guo, L. X., & Liu, X. L. (2015). An ultrawideband MIMO antenna with a high isolation. IEEE Antennas and Wireless Propagation Letters, 15, 182–185.

    Article  Google Scholar 

  21. 21.

    Ali, W. A. E., & Ibrahim, A. A. (2017). A compact double-sided MIMO antenna with an improved isolation for UWB applications. AEU-International Journal of Electronics and Communications, 82, 7–13.

    Article  Google Scholar 

  22. 22.

    Kumar, R., & Surushe, G. (2016). Design of microstrip-fed printed UWB diversity antenna with tee crossed shaped structure. Engineering Science and Technology International Journal, 19(2), 946–955.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to K. Vasu Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babu, K.V., Anuradha, B. Design of UWB MIMO Antenna to Reduce the Mutual Coupling Using Defected Ground Structure. Wireless Pers Commun (2021).

Download citation


  • Impedance banwidth
  • Peak gain
  • Ultra wide band antenna (UWB)
  • Group delay
  • Envelope correlation coefficient