A Hybrid Transform for Reduction of Peak to Average Power Ratio in OFDM System

Abstract

The performance of orthogonal frequency multiplexing (OFDM) communication systems is affected by the peak to average power ratio (PAPR). The research work uses a hybrid transform for reducing this PAPR value. In recent years, OFDM is more prevalent in the research field, particularly in wireless communication. OFDM system is found to have a high PAPR value. This high PAPR leads to nonlinear distortions that result in low power efficiency. Hence there is a need to minimize PAPR. Hadamard transform is a commonly used technique for the reduction of PAPR. However, greater efficiency can be carried out using a hybrid way to reducing the PAPR of the signals applying OFDM. Modified Discrete Cosine Transform (MDCT) combined with nonlinear companding technique, is suggested to minimize PAPR, described as a hybrid transform. It is shown that the hybrid transform achieves a better lessening of PAPR and minimized Bit Error Rate (BER) in the OFDM communication system when compared with the basic OFDM, Hadamard transforms, and Companding technique.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Xiao, J., et al. (2012). Hadamard transform combined with companding transform technique for PAPR reduction in an optical direct-detection OFDM system. IEEE/OSA Journal of Optical Communications and Networking, 4(10), 709–714. https://doi.org/10.1364/JOCN.4.000709.

    Article  Google Scholar 

  2. 2.

    Gao, Y., Yu, J., Xiao, J., Cao, Z., Li, F., & Chen, L. (2011). Direct-detection optical OFDM transmission system with pre-emphasis technique. Journal of Lightwave Technology, 29(14), 2138–2145. https://doi.org/10.1109/JLT.2011.2154299.

    Article  Google Scholar 

  3. 3.

    Boonkajay, A., Obara, T., Yamamoto, T., & Adachi, F. (2013). Selective mapping for broadband single-carrier transmission using joint Tx/Rx MMSE-FDE. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), London (pp. 641–645). https://doi.org/10.1109/PIMRC.2013.6666215

  4. 4.

    Hassan, E. S., Xu, Z., El-Khamy, S. E., et al. (2012). Peak-to-average power ratio reduction using selective mapping with unequal power distribution. Journal of Central South University, 19, 1902–1908. https://doi.org/10.1007/s11771-012-1224-x.

    Article  Google Scholar 

  5. 5.

    Qu, D., Li, L., & Jiang, T. (2014). Invertible subset LDPC code for PAPR reduction in OFDM systems with low complexity. IEEE Transactions on Wireless Communications, 13(4), 2204–2213. https://doi.org/10.1109/TWC.2014.031314.131289.

    Article  Google Scholar 

  6. 6.

    Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters, 38(5), 246–247. https://doi.org/10.1049/el:20020175.

    Article  Google Scholar 

  7. 7.

    Anoh, K., Tanriover, C., Adebisi, B., & Hammoudeh, M. (2018). A new approach to iterative clipping and filtering PAPR reduction scheme for OFDM systems. IEEE Access, 6, 17533–17544. https://doi.org/10.1109/ACCESS.2017.2751620.

    Article  Google Scholar 

  8. 8.

    Anoh, K., Tanriover, C., & Adebisi, B. (2017). On the optimization of iterative clipping and filtering for PAPR reduction in OFDM systems. IEEE Access, 5, 12004–12013. https://doi.org/10.1109/ACCESS.2017.2711533.

    Article  Google Scholar 

  9. 9.

    Wang, Z., Zhang, S., & Qiu, B. (2010). PAPR reduction of OFDM signal by using Hadamard transform in companding techniques. In 2010 IEEE 12th international conference on communication technology, Nanjing (pp. 320–323). https://doi.org/10.1109/ICCT.2010.5689223

  10. 10.

    Cao, Z., et al. (2010). Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems. Journal of Lightwave Technology, 28(16), 2423–2429. https://doi.org/10.1109/JLT.2010.2051416.

    Article  Google Scholar 

  11. 11.

    Armstrong, J. (2009). OFDM for Optical Communications. Journal of Lightwave Technology, 27(3), 189–204. https://doi.org/10.1109/JLT.2008.2010061.

    Article  Google Scholar 

  12. 12.

    Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268. https://doi.org/10.1109/TBC.2008.915770.

    Article  Google Scholar 

  13. 13.

    Weng, C. E., Chang, C. W., Chen, C. H., et al. (2013). Novel low-complexity partial transmit sequences scheme for PAPR reduction in OFDM systems using adaptive differential evolution algorithm. Wireless Personal Communications, 71, 679–694. https://doi.org/10.1007/s11277-012-0836-7.

    Article  Google Scholar 

  14. 14.

    Bandara, K., Sewaiwar, A., & Chung, Y. (2015). Efficient nonlinear companding scheme for a substantial reduction in peak-to-average power ratio of OFDM. Journal of Systems Engineering and Electronics, 26(5), 924–931. https://doi.org/10.1109/JSEE.2015.00100.

    Article  Google Scholar 

  15. 15.

    Bulakci, O., Schuster, M., Bunge, C. & Spinnler, B. (2008). Reduced complexity precoding-based peak-to-average power ratio reduction applied to optical direct-detection OFDM. In 2008 34th European conference on optical communication, Brussels (pp. 1–2). https://doi.org/10.1109/ECOC.2008.4729497

  16. 16.

    Nadal, L., Svaluto Moreolo, M., Fabrega, J. M., & Junyent, G. (2012). Low complexity bit rate variable transponders based on optical OFDM with PAPR reduction capabilities. In 2012 17th European conference on networks and optical communications, Vilanova i la Geltru (pp. 1–6). https://doi.org/10.1109/NOC.2012.6249918

  17. 17.

    Adebisi, B., Anoh, K., Rabie, K. M., Ikpehai, A., Fernando, M., & Wells, A. (2019). A new approach to peak threshold estimation for impulsive noise reduction over power line fading channels. IEEE Systems Journal, 13(2), 1682–1693. https://doi.org/10.1109/JSYST.2018.2808230.

    Article  Google Scholar 

  18. 18.

    Hou, J., Ge, J., Zhai, D., & Li, J. (2010). Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme. IEEE Transactions on Broadcasting, 56(2), 258–262. https://doi.org/10.1109/TBC.2010.2046970.

    Article  Google Scholar 

  19. 19.

    Li, N., Li, M., & Deng, Z. (2020). Signal assisted clipping distortion recovery for OFDM systems based on compressed sensing. IEEE Access, 8, 157549–157556. https://doi.org/10.1109/ACCESS.2020.3019718.

    Article  Google Scholar 

  20. 20.

    Adebisi, B., Anoh, K., & Rabie, K. M. (2019). Enhanced nonlinear companding scheme for reducing PAPR of OFDM systems. IEEE Systems Journal, 13(1), 65–75. https://doi.org/10.1109/JSYST.2018.2851847.

    Article  Google Scholar 

  21. 21.

    Xianbin Wang, T. T., & Tjhung and C. S. Ng, . (1999). Reduction of peak-to-average power ratio of OFDM system using a companding technique. IEEE Transactions on Broadcasting, 45(3), 303–307. https://doi.org/10.1109/11.796272.

    Article  Google Scholar 

  22. 22.

    Jiang, T., Yang, Y., & Song, Y.-H. (2005). Exponential companding technique for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting, 51(2), 244–248. https://doi.org/10.1109/TBC.2005.847626.

    Article  Google Scholar 

  23. 23.

    Rahmatullah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592. https://doi.org/10.1109/SURV.2013.021313.00164.

    Article  Google Scholar 

  24. 24.

    Zhang, H., Yang, L., & Hanzo, L. (2017). Piecewise companding transform assisted optical-OFDM systems for indoor visible light communications. IEEE Access, 5, 295–311. https://doi.org/10.1109/ACCESS.2016.2640203.

    Article  Google Scholar 

  25. 25.

    Wang, Y., & Wang, Lh. (2017). Transforming the statistical distribution of wireless OFDM signal for PAPR reduction. Wireless Personal Communications, 96, 765–777. https://doi.org/10.1007/s11277-017-4199-y.

    Article  Google Scholar 

  26. 26.

    Anoh, K., Adebisi, B., Rabie, K. M., Hammoudeh, M., & Gacanin, H. (2017). On Companding and optimization of OFDM signals for mitigating impulsive noise in power-line communication systems. IEEE Access, 5, 21818–21830. https://doi.org/10.1109/ACCESS.2017.2747629.

    Article  Google Scholar 

  27. 27.

    Rateb, A. M., & Labana, M. (2019). An optimal low complexity PAPR reduction technique for next generation OFDM systems. IEEE Access, 7, 16406–16420. https://doi.org/10.1109/ACCESS.2019.2895415.

    Article  Google Scholar 

  28. 28.

    Anoh, K., Adebisi, B., & Hammoudeh, M. (2017). A comparison of ICF and companding for impulsive noise mitigation in power line communication systems. In International conference on future networks and distributed systems, July 2017 (Article No. 55, pp. 1–6). https://doi.org/10.1145/3102304.3109815

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirubanandasarathy Nageswaran.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nageswaran, K., Selvan, M. & Gandhi, M. A Hybrid Transform for Reduction of Peak to Average Power Ratio in OFDM System. Wireless Pers Commun (2021). https://doi.org/10.1007/s11277-021-08174-z

Download citation

Keywords

  • OFDM
  • PAPR
  • Modified DCT technique
  • Non-linear companding technique
  • Hybrid transform