A Novel Approach Based on EMD to improve the Performance of SSVEP Based BCI System


This paper investigate the effectiveness of the Empirical Mode Decomposition (EMD) based Power Spectrum analysis (PSA) technique to evaluate the Performance of SSVEP based Brain computer inference (BCI) system in terms of SSEP recognition accuracy and Information transmission rate (ITR). Steady State Visual evoked Potential (SSVEP) is a quasi sinusoidal signal contaminated into recorded EEG signal. The presence of artifacts and spontaneous EEG signal deteriorate the SSVEP Performance. EMD is technique that decomposes the recorded EEG Signal into several oscillating components known as intrinsic mode functions (IMF). The selection of IMF components plays a vital role in recognizing SSVEP signal with high accuracy. Power spectrum density (PSD) as a feature is extracted from the SSVEP Prominent IMF component to recognize the accuracy of SSVEP BCI System. The obtained result compared with the Wavelet-based PSA approach and conventional PSA approach. The result obtained from four subject demonstrate that the improve the SSVEP performance in terms accuracy and ITR about 4.24% and 6.78 bits/minute as compared to DWT-PSA, 6.78% and 10.65 bits/minute as compared to standard PSA respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Chaudhary, U., Birbaumer, N., & Ramos-Murguialday, A. (2016). Brain-computer interfaces for Communication and rehabilitation. Nature Reviews Neurology, 12(9), 513–525.

    Article  Google Scholar 

  2. 2.

    Wang, Y. T., Wang, Y., & Jung, T. P. (2011). A cell-phone-based brain-computer interface for communication in daily life. Journal of Neural Engineering, 8(2), 025018.

    Article  Google Scholar 

  3. 3.

    Wu, Z., Lai, Y., Xia, Y., Wu, D., & Yao, D. (2008). Stimulator selection in SSVEP- based BCI. Medical Engineering and Physics, 30, 1079–1088.

    Article  Google Scholar 

  4. 4.

    Amiri, S., Rabbi, A., Azinfar, L., Fazzel-Rezai, R. (2013). A Review of P300,SSVEP and Hybrid P300/SSVEP Brain Computer Interface Systems- Recent Progress and future Prospects”, Intech, vol. ISBN:978–953,PP.195–213

  5. 5.

    Halder, S., Hammer, E., Kleih, S., & Bogdan, M. (2013). Prediction of auditory and Visual P300 brain-computer interface aptitude. PLoS ONE, 8(2), e53513.

    Article  Google Scholar 

  6. 6.

    Zhang, Y., Zhou, G., Zho, Q., Jin, J., Wang, X., & Cichocki, A. (2011). Multiway canonical correlation analysis forfrequency components recognition in SSVEP-based BCIs. International Conference on Neural information processing, 3, 287–295.

    Article  Google Scholar 

  7. 7.

    Muller-Putz, G. R., & Pfurtscheller, G. (2008). Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Transactions on Biomedical Engineering, 55, 361–364.

    Article  Google Scholar 

  8. 8.

    Diez, P. F., Mut, V. A., Avila Perona, E. M., & Laciar Leber, E. (2011). Asynchronous BCI control using high-frequency SSVEP. J. Neuroeng. Rehabil., 8, 39.

    Article  Google Scholar 

  9. 9.

    İşcan, Z., & Nikulin, V. V. (2018). Steady-state visual evoked potential (SSVEP) based brain-computerinterface (BCI) performance under different perturbations. PLoS ONE, 13, e0191673.

    Article  Google Scholar 

  10. 10.

    Bin, G., Gao, X., Yan, Z., Hong, B., & Gao, S. (2009). An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of Neural Engineering, 6, 046002.

    Article  Google Scholar 

  11. 11.

    Hwang, H.-J., Lim, J.-H., Jung, Y.-J., Choi, H., Lee, S. W., & Im, C.-H. (2012). Development of an SSVEP-based BCI Spelling system adopting a QWERTY-style LED keyboard. Journal of Neuroscience Methods, 208, 59–65.

    Article  Google Scholar 

  12. 12.

    Jiang, X., Bian, G., & Tian, Z. (2019). Removal of artifacts from EEG signal: a review. MDPI Sensors, 19(5), 987.

    Article  Google Scholar 

  13. 13.

    Chen, X., Wang, Y., Gao, S., Jung, T.-P., and Gao, X. (2015). “Filter bank canonical correlation analysis for Implementing a high-speed SSVEP-based brain-computer interface. Journal of Neural Engineering, 42, 2015.

  14. 14.

    Zhang, Y. U., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2014). Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. International Journal of Neural System., 24(04), 1450013.

    Article  Google Scholar 

  15. 15.

    No-Sang, K., Klaus-Robert, M., & Seong-Whan, L. (2015). A lower limb exoskeleton control system based on steady-state visual evoked potentials. Journal of Neural Engineering, 12, 056009.

    Article  Google Scholar 

  16. 16.

    Nakanishi, M., Wang, Y., Wang, Y.-T., & Jung, T.-P. (2015). A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS ONE, 10, e0140703.

    Article  Google Scholar 

  17. 17.

    Diez, P. F., Torres Müller, S. M., Mut, V. A., Laciar, E., Avila, E., Bastos-Filho, T. F., & Sarcinelli-Filho, M. (2013). Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Medical Engineering & Physics, 35, 1155–1164.

    Article  Google Scholar 

  18. 18.

    Chen, Y.-F., Atal, K., Xie, S.-Q., & Liu, Q. (2017). A new multivariate empirical mode decomposition method for Improving the performance of SSVEP-based brain-computer interface. Journal of Neural Engineering, 14, 046028.

    Article  Google Scholar 

  19. 19.

    Mohammad, A., & Angelika, P. (2016). Advancing the detection of steady-state visual evoked potentials in brain-Computer interfaces. Journal of Neural Engineering, 13, 036005.

    Article  Google Scholar 

  20. 20.

    www.setzner.com, “AVI SSVEP Dataset-Adnan Vilic” available online.

  21. 21.

    Wang, Y., Wang, R., Gao, X., Hong, B., & Gao, S. (2006). A Practical VEP-based brain computer interface. IEEE Trans. Neural Syst. Rehab. Eng., 14(2), 234–239.

    Article  Google Scholar 

  22. 22.

    Friman, O., Volosyak, I., & Graser, A. (2007). Multiple channel detection of steady state visual evoked potentials for brain computer interfaces. IEEE Transaction on Biomedical Engineering, 54(4), 742–750.

    Article  Google Scholar 

  23. 23.

    Zhang, Z., Li, X., and Deng, Z., “A CWT-based SSVEP classification method for brain-computer interface system,” In Proc. Int. Conf. on Intelligent Control and Information Processing, 43–48, 2010.

  24. 24.

    Zhang, Y., Xu, P., Cheng, K., & Yao, D. (2014). Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. Journal of Neuroscience Method, 221, 32–40.

    Article  Google Scholar 

  25. 25.

    Ojha, M.k., Mukul, M.k. (2020). Detection of Target Frequency from SSVEP Signal using Empirical mode decomposition for SSVEP Based BCI Inference” Wireless Personal communication ISSN 0929-6212 on 31st August 2020.

  26. 26.

    Manoj Kumar M and Fumitoshi M. (2011). Feature Extraction from Subband Brain Signal and its classification. SICE Journal of Control, Measurement and System Integration, 4(5), 332–340.

    Article  Google Scholar 

  27. 27.

    Yan, B., Li, Z., Li, H., Yang, G., and Shen, H. (2010). Research on brain-computer interface technology based on steady state visual evoked potentials. In Proc. 4thInt. Conf. on Bioinformatics and Biomedical Engineering, 1–4, 2010.

  28. 28.

    Bian, Y., Li, H. W., Zhao, L., Yang, G. H., & Geng, L. Q. (2011). Research on steady state visual evoked potentials based on wavelet packet technology for brain-computer interface. Proceedings of Eng., 15, 2629–2633.

    Article  Google Scholar 

  29. 29.

    Labate, D., Foresta, F. L., Occhiuto, G., Morabito, F. C., Lay-Ekuakille, A., & Vergallo, P. (2013). Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: A comparison. IEEE Sensors Journal, 13, 2666–2674.

    Article  Google Scholar 

  30. 30.

    Flandrin, P., Rilling, G., & Goncalves, P. (2003). Empirical mode decomposition as a filter Bank. IEEE Signal Processing Letter, 11, 112–114.

    Article  Google Scholar 

  31. 31.

    Gao, Z. K., Zhang, J., Dang, W. D., Yang, Y. X., Cai, Q., Mu, C. X., & Grebogi, C. (2018). Multivariate empirical mode decomposition and multiscale entropy analysis of EEG signals from SSVEP-based BCI system. EPL, 122, 40010.

    Article  Google Scholar 

  32. 32.

    Cichocki, A., Shishkin, S., Musha, T., Leonowicz, Z., Asada, T., & Kurachi, T. (2006). EEG filtering based on blind source separation for early detection of Alzheimer’s disease. Clinical Neurophysiology, 116, 729–737.

    Article  Google Scholar 

  33. 33.

    Walpow, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mukesh Kumar Ojha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ojha, M.K., Mukul, M.K. A Novel Approach Based on EMD to improve the Performance of SSVEP Based BCI System. Wireless Pers Commun (2021). https://doi.org/10.1007/s11277-021-08135-6

Download citation


  • Steady state visual evoked potential (SSVEP)
  • Brain computer interface (BCI)
  • Empirical mode decomposition (EMD)
  • Power spectrum analysis (PSD)
  • Discrete wavelet decomposition (DWD)