Presenting an Optimal Energy-Aware Locating Structure Using the Internet of Things and Device-to-Device Communications on Smartphones

Abstract

Recently, Device-To-Device (D2D) communications as a novel technology for improving the capacity and reducing power consumption in wireless networks have been taken into account. In D2D communications, multimedia programs utilize a great amount of energy sources and bandwidth to meet the increasing needs of mobile users. To solve the above-mentioned problem, in this paper, a new approach was presented for the localization of D2D communications on smartphones, which was based on the Dynamic Packet Transport and Multimedia Presentation Tracking, protocols as well as the distortion rate. Due to this new approach, the energy-aware optimization space and service quality standards were improved with an evolutionary swarm intelligence algorithm, called the Scaling Optimization Algorithm. Furthermore, 5G technology was used in the current study to speed up internet connections. In this regard, infrastructure was required. Therefore, the Internet of Things as infrastructure was considered in 5G technology. The results of the simulation of the proposed algorithm and its comparison with other algorithms reviewed in this paper hinted at the superiority of this algorithm in reducing energy consumption and improving the service quality standards.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Priya, L. R., & Rubasoundar, K. (2018). LTE: An enhanced hybrid domain downlink scheduling. Cognitive Systems Research, 52, 550–555.

    Article  Google Scholar 

  2. 2.

    Copet, P. B., Marchetto, G., Sisto, R., & Costa, L. (2017). Formal verification of LTE-UMTS and LTE–LTE handover procedures. Computer Standards & Interfaces, 50, 92–106.

    Article  Google Scholar 

  3. 3.

    Mirmohseni, S. M., Tang, C., & Javadpour, A. (2020). Using Markov learning utilization model for resource allocation in cloud of thing network. Wireless Personal Communications, 115, 653–677.

    Article  Google Scholar 

  4. 4.

    Rostami, A. S., Badkoobe, M., Mohanna, F., Keshavarz, H., Hosseinabadi, A. R., & Kumar Sangaiah, A. (2018). Survey on clustering in heterogeneous and homogeneous wireless sensor networks. The Journal of Supercomputing, 74, 277–323.

    Article  Google Scholar 

  5. 5.

    Tavakkolai, H., Yadollahi, N., Yadollahi, M., Hosseinabadi, A. R., Rezaei, P., & Kardgar, M. (2015). Sensor selection wireless multimedia sensor network using gravitational search algorithm. Indian Journal of Science and Technology, 8, 1–6.

    Google Scholar 

  6. 6.

    Bozorgi, S. M., Rostami, A. S., Hosseinabadi, A. R., & Balas, V. E. (2017). A new clustering protocol based on renewable energy and multi-hop routing for energy harvesting-wireless sensor networks. Computers & Electrical Engineering, 64, 233–247.

    Article  Google Scholar 

  7. 7.

    Javadpour, A., Wang, G., & Rezaei, S. (2020). Resource management in a peer-to-peer cloud network for IoT. Wireless Personal Communications, 115, 2471–2488.

    Article  Google Scholar 

  8. 8.

    Han, T., Bozorgi, S. M., Orang, A. V., Hosseinabadi, A. R., Sangaiah, A. K., & Chen, M. Y. (2019). A hybrid unequal clustering based on density with energy conservation in wireless nodes. Sustainability, 11, 1–26.

    Google Scholar 

  9. 9.

    Sangaiah, A. K., Bian, G. B., Bozorgi, S. M., Suraki, M. Y., Hosseinabadi, A. R., & Shareh, M. B. (2020). A novel quality of service aware web services composition using biogeography-based optimization algorithm. Soft Computing, 24, 8125–8137.

  10. 10.

    Sangaiah, A. K., Sadeghilalimi, M., Hosseinabadi, A. R., & Zhang, W. (2019). Energy consumption in point-coverage wireless sensor networks via Bat algorithm. IEEE Access, 7, 180258–180269.

    Article  Google Scholar 

  11. 11.

    Jeon, J., Niu, H., Li, Q., Papathanassiou, A., & Wu, G. (2015). LTE with listen-before-talk in unlicensed spectrum. In IEEE international conference on communication workshop (ICCW) (pp. 2320–2324).

  12. 12.

    Sangaiah, A. K., Hosseinabadi, A. R., Shareh, M. B., Bozorgi Rad, S. Y., Zolfagharian, A., & Chilamkurti, N. (2020). IoT resource allocation and optimization based on heuristic algorithm. Sensors, 20(2), 1–26.

    Article  Google Scholar 

  13. 13.

    Jeon, J., Niu, H., Li, Q., Papathanassiou, A., & Wu, G. (2014). LTE in the unlicensed spectrum: Evaluating coexistence mechanisms. In IEEE Globecom workshops (GC Wkshps) (pp. 740–745).

  14. 14.

    Huynh, D. T., Chen, M., Huynh, T. T., & Hai, C. H. (2019). Energy consumption optimization for green Device-to-Device multimedia communications. Future Generation Computer Systems, 92, 1131–1141.

    Article  Google Scholar 

  15. 15.

    Rostami, A. S., Badkoobe, M., Mohanna, F., Hosseinabadi, A. R., Kardgar, M., & Balas, V. E. (2016). Imperialist competition based clustering algorithm to improve the lifetime of wireless sensor network. In 7th international workshop in soft computing applications (SOFA 2016) (Vol. 633, pp. 189–202).

  16. 16.

    Tariq, M., Anjum, M. R., & Amjad, M. (2018). Design of simulation system for LTE-U using 5 GHz band in MATLAB. Wireless Personal Communications, 100, 1661–1676.

    Article  Google Scholar 

  17. 17.

    Mousavi, H., Amiri, S. I., Mostafavi, M. A., & Choon, C. Y. (2019). LTE physical layer: Performance analysis and evaluation. Applied Computing and Informatics, 15, 34–44.

    Article  Google Scholar 

  18. 18.

    Saemi, B., Hosseinabadi, A. R., Kardgar, M., & Balas, V. E. (2016). Nature inspired partitioning clustering algorithms: A review and analysis. In 7th international workshop in soft computing applications (SOFA 2016) (Vol. 634, pp. 96–116).

  19. 19.

    Javadpour, A. (2019). Improving resources management in network virtualization by utilizing a software-based network. Wireless Personal Communications, 106, 505–519.

    Article  Google Scholar 

  20. 20.

    Samuel, C. Y., & Winter, P. (2015). LTE-Advanced and IEEE 802.11ac: A new network architecture and opportunity for higher-education institutions. International Journal of Information and Learning Technology, 32, 221–234.

    Article  Google Scholar 

  21. 21.

    Ghahfarokhi, S. B., Azadmanesh, M., & Khorasani, S. K. (2018). Energy and spectrum efficient mobility-aware resource management for D2D multicasting. Computer Networks, 146, 47–64.

    Article  Google Scholar 

  22. 22.

    Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2016). Energy-efficient resource allocation for D2D communications in cellular networks. IEEE Transactions on Vehicular Technology, 65, 6972–6986.

    Article  Google Scholar 

  23. 23.

    Tang, R., Zhao, J., Qu, H., & Zhang, Z. (2016). Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication. In IEEE Globecom workshops (GC Wkshps) (pp. 1–7).

  24. 24.

    Wu, D., Wang, J., Hu, R. Q., Cai, Y., & Zhou, L. (2014). Energy-efficient resource sharing for mobile device-to-device multimedia communications. IEEE Transactions on Vehicular Technology, 63, 2093–2103.

    Article  Google Scholar 

  25. 25.

    Oduola, W. O., Li, X., Qian, L., & Han, Z. (2014). Power control for device-to-device communications as an underlay to cellular system. In IEEE international conference on communications (ICC) (pp. 5257–5262).

  26. 26.

    Gao, C., Sheng, X., Tang, J., Zhang, W., Zou, S., & Guizani, M. (2014). Joint mode selection, channel allocation and power assignment for green device-to- device communications. In IEEE international conference on communications (ICC) (pp. 178–183).

  27. 27.

    Ding, J., Jiang, L., & He, C. (2016). Energy-efficient power control for underlaying D2D communication with channel uncertainty: User-centric versus network-centric. Journal of Communications and Networks, 18, 589–599.

    Article  Google Scholar 

  28. 28.

    Zhou, Z., Dong, M., Ota, K., Wang, G., & Yang, L. T. (2016). Energy-efficient resource allocation for D2D communications underlaying Cloud-RANBased LTE-A networks. IEEE Internet of Things Journal, 3, 428–438.

    Article  Google Scholar 

  29. 29.

    Datsika, E., Antonopoulos, A., Zorba, N., & Verikoukis, C. (2017). Cross-network performance analysis of network coding aided cooperative out band D2D communications. IEEE Transactions on Wireless Communications, 16, 3176–3188.

    Article  Google Scholar 

  30. 30.

    Antonopoulos, A., Kartsakli, E., & Verikoukis, C. (2014). Game theoretic D2D content dissemination in 4G cellular networks. IEEE Communications Magazine, 52, 125–132.

    Article  Google Scholar 

  31. 31.

    Wang, L., Liu, L., Cao, X., Tian, X., & Cheng, Y. (2015). Sociality-aware resource allocation for device-to-device communications in cellular networks. IET Communications, 9, 342–349.

    Article  Google Scholar 

  32. 32.

    Zhao, Y., Li, Y., Cao, Y., Jiang, T., & Ge, N. (2015). Social-aware resource allocation for device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 14, 6621–6634.

    Article  Google Scholar 

  33. 33.

    Chen, X., Proulx, B., Gong, X., & Zhang, J. (2015). “Exploiting social ties for cooperative D2D communications: A mobile social networking case. IEEE/ACM Transactions on Networking, 23, 1471–1484.

    Article  Google Scholar 

  34. 34.

    Meng, Y., Jiang, C., Chen, H. H., & Ren, Y. (2017). Cooperative device-to-device communications: Social networking perspectives. IEEE Network, 31, 38–44.

    Article  Google Scholar 

  35. 35.

    Ahmad, M., Azam, M., Naeem, M., Iqbal, M., Anpalagan, A., & Haneef, M. (2017). Resource management in D2D communication: An optimization perspective. Journal of Network and Computer Applications, 93, 51–75.

    Article  Google Scholar 

  36. 36.

    Xu, J., Guo, C., & Zhang, H. (2018). Joint channel allocation and power control based on PSO for cellular networks with D2D communications. Computer Networks, 133, 104–119.

    Article  Google Scholar 

  37. 37.

    Yang, Z. Y., & Kuo, Y. W. (2017). Efficient resource allocation algorithm for overlay D2D communication. Computer Networks, 124, 61–71.

    Article  Google Scholar 

  38. 38.

    Swain, S. N., Thakur, R., & Murthy, C. S. R. (2017). Design and stochastic geometric analysis of an efficient Q-Learning based physical resource block allocation scheme to maximize the spectral efficiency of Device-to-Device overlaid cellular networks. Computer Networks, 119, 71–85.

    Article  Google Scholar 

  39. 39.

    Javadpour, A., Wang, G., Rezaei, S., & Li, K. C. (2020). Detecting straggler MapReduce tasks in big data processing infrastructure by neural network. The Journal of Supercomputing, 76, 6969–6993.

    Article  Google Scholar 

  40. 40.

    Peng, B., Hu, C., Peng, T., Yang, Y., & Wang, W. (2013). A resource allocation scheme for D2D multicast with QoS protection in OFDMA-based systems. In 24th international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 12383–2387).

  41. 41.

    Bhardwaj, A., & Agnihotri, S. (2015) A resource allocation scheme for device-to-device multicast in cellular networks. In 26th annual international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1498–1502).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farahnaz Mohanna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rostami, A.S., Mohanna, F. & Keshavarz, H. Presenting an Optimal Energy-Aware Locating Structure Using the Internet of Things and Device-to-Device Communications on Smartphones. Wireless Pers Commun (2021). https://doi.org/10.1007/s11277-021-08114-x

Download citation

Keywords

  • D2D communications
  • Smartphones
  • IoT
  • 5G