Improvement of Transmission Control Protocol for High Bandwidth Applications

Abstract

Transmission control protocol (TCP) is the widely and dominantly used protocol in today’s internet. A very recent implementation of congestion control algorithm is BBR by Google. Bottleneck bandwidth and round-trip time (BBR) is a congestion control algorithm which is created with the aim of increasing throughput and reducing delay. The congestion control protocols mentioned previously try to determine congestion limits by filling router queues. BBR drains the router queues at the bottleneck by sending exactly at the bottleneck link rate. This is done by the BBR through pacing rate which infers the delivery rate of the receiver and uses this as the estimated bottleneck bandwidth. But when the data rate is high, in the startup phase itself pipe becomes full and leads to some degradation in the Access Point of wireless environments by inducing losses specific to this environment. So the current pacing rate is not suitable for producing higher throughputs. Therefore, in the proposed system named R-BBR, this startup gain should be lower than the current startup gain which eventually would reduce pacing rate to reduce queue pressure in the sink node during the startup phase. The startup phase of BBR is modified to solve the problem of pipe full under high data rate. R-BBR has been evaluated over a wide range of wired as well as wireless networks by varying different factors like startup gain, congestion window, and pacing rate. It is inferred that R-BBR performs better than BBR with significant performance improvement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2018). A tutorial on IEEE 802.11 ax high efficiency WLANs. IEEE Communications Surveys & Tutorials, 21(1), 197–216.

    Article  Google Scholar 

  2. 2.

    Bellalta, B. (2016). IEEE 802.11 ax: High-efficiency WLANs. IEEE Wireless Communications, 23(1), 38–46.

    Article  Google Scholar 

  3. 3.

    Islam, M. M., Funabiki, N., Kuribayashi, M., Debnath, S. K., Munene, K. I., Lwin, K. S., & Al Mamun, M. S. (2018). Dynamic access-point configuration approach for elastic wireless local-area network system and its implementation using Raspberry Pi. International Journal of Networking and Computing, 8(2), 254–281.

    Article  Google Scholar 

  4. 4.

    Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V. (2016). BBR: Congestion-based congestion control. Queue, 14(5), 20–53.

    Article  Google Scholar 

  5. 5.

    Scholz, D., Jaeger, B., Schwaighofer, L., Raumer, D., Geyer, F., & Carle, G. (2018). Towards a deeper understanding of TCP BBR congestion control. In 2018 IFIP networking conference (IFIP networking) and workshops (pp. 1–9), May 2018. IEEE.

  6. 6.

    Hock, M., Bless, R., & Zitterbart, M. (2017). Experimental evaluation of BBR congestion control. In 2017 IEEE 25th international conference on network protocols (ICNP) (pp. 1–10), October 2017. IEEE.

  7. 7.

    Zhang, Y., Cui, L., & Tso, F. P. (2018). Modest BBR: Enabling better fairness for BBR congestion control. In 2018 IEEE symposium on computers and communications (ISCC) (pp. 00646–00651), June 2018. IEEE.

  8. 8.

    Atxutegi, E., Liberal, F., Haile, H. K., Grinnemo, K. J., Brunstrom, A., & Arvidsson, A. (2018). On the use of TCP BBR in cellular networks. IEEE Communications Magazine, 56(3), 172–179.

    Article  Google Scholar 

  9. 9.

    Charalambos, C. P., & Frost, V. S. (1999). Performance of TCP extensions on noisy high BDP networks. IEEE Communications Letters, 3(10), 294–296.

    Article  Google Scholar 

  10. 10.

    Grazia, C. A. (2019). IEEE 802.11 n/AC wireless network efficiency under different TCP congestion controls. In 2019 international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 1–6), October 2019. IEEE.

  11. 11.

    Pentikousis, K. (2000). TCP in wired-cum-wireless environments. IEEE Communications Surveys & Tutorials, 3(4), 2–14.

    Article  Google Scholar 

  12. 12.

    Li, Y. T., Leith, D., & Shorten, R. N. (2007). Experimental evaluation of TCP protocols for high-speed networks. IEEE/ACM Transactions on networking, 15(5), 1109–1122.

    Article  Google Scholar 

  13. 13.

    Jacobson, V. (1988). Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 18(4), 314–329.

    Article  Google Scholar 

  14. 14.

    Yang, P., Shao, J., Luo, W., Xu, L., Deogun, J., & Lu, Y. (2013). TCP congestion avoidance algorithm identification. IEEE/ACM Transactions on Networking, 22(4), 1311–1324.

    Article  Google Scholar 

  15. 15.

    Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A. (1996). RFC2018: TCP selective acknowledgement options.

  16. 16.

    Cui, L., Cui, X., & Lee, W. J. (2011). A segment-based SACK scheme for TCP over the error-prone links. Wireless Personal Communications, 61(2), 383–402.

    Article  Google Scholar 

  17. 17.

    Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42(5), 64–74.

    Article  Google Scholar 

  18. 18.

    Jude, M. J. A., Diniesh, V. C., Shivaranjani, M., & Shanju, R. (2018). A feedback aware reliable transport protocol with improved window increment mechanism for inter vehicular wireless network. Wireless Personal Communications, 98(1), 1119–1134.

    Article  Google Scholar 

  19. 19.

    Chaturvedi, R. K., & Chand, S. (2020). Optimal load balancing linked increased algorithm for multipath TCP. Wireless Personal Communications, 111(3), 1505–1524.

    Article  Google Scholar 

  20. 20.

    Brakmo, L. S., & Peterson, L. L. (1995). TCP Vegas: End to end congestion avoidance on a global Internet. IEEE Journal on Selected Areas in Communications, 13(8), 1465–1480.

    Article  Google Scholar 

  21. 21.

    Claypool, M., Chung, J. W., & Li, F. (2018). BBR' an implementation of bottleneck bandwidth and round-trip time congestion control for ns-3. In Proceedings of the 10th workshop on ns-3 (pp. 1–8), June 2018.

  22. 22.

    Kim, G. H., & Cho, Y. Z. (2019). Delay-aware BBR congestion control algorithm for RTT fairness improvement. IEEE Access, 8, 4099–4109.

    Article  Google Scholar 

  23. 23.

    Ma, S., Jiang, J., Wang, W., & Li, B. (2017). Fairness of congestion-based congestion control: Experimental evaluation and analysis. http://arxiv.org/abs/1706.09115.

  24. 24.

    Miyazawa, K., Sasaki, K., Oda, N., & Yamaguchi, S. (2018). Cycle and divergence of performance on TCP BBR. In 2018 IEEE 7th international conference on cloud networking (CloudNet) (pp. 1–6), October 2018. IEEE.

  25. 25.

    Sasaki, K., Hanai, M., Miyazawa, K., Kobayashi, A., Oda, N., & Yamaguchi, S. (2018). TCP fairness among modern TCP congestion control algorithms including TCP BBR. In 2018 IEEE 7th international conference on cloud networking (CloudNet) (pp. 1–4), October 2018. IEEE.

  26. 26.

    Tao, Y., Jiang, J., Ma, S., Wang, L., Wang, W., & Li, B. (2018). Unraveling the RTT-fairness problem for BBR: A queueing model. In 2018 IEEE global communications conference (GLOBECOM) (pp. 1–6), December 2018. IEEE.

  27. 27.

    Ware, R., Mukerjee, M. K., Seshan, S., & Sherry, J. (2019). Modeling bbr's interactions with loss-based congestion control. In Proceedings of the internet measurement conference (pp. 137–143), October 2019.

  28. 28.

    Zhang, S. (2019). An evaluation of BBR and its variants. http://arxiv.org/abs/1909.03673.

  29. 29.

    Na, W., Bae, B., Cho, S., & Kim, N. (2019). DL-TCP: Deep learning-based transmission control protocol for disaster 5G mmwave networks. IEEE Access, 7, 145134–145144.

    Article  Google Scholar 

  30. 30.

    Jaeger, B., Scholz, D., Raumer, D., Geyer, F., & Carle, G. (2019). Reproducible measurements of TCP BBR congestion control. Computer Communications, 144, 31–43.

    Article  Google Scholar 

  31. 31.

    Kim, G. H., Song, Y. J., Mahmud, I., & Cho, Y. Z. (2019). Enhanced BBR congestion control algorithm for improving RTT fairness. In 2019 eleventh international conference on ubiquitous and future networks (ICUFN) (pp. 358–360), July 2019. IEEE.

  32. 32.

    Grazia, C. A., Klapez, M., & Casoni, M. (2020). BBRp: Improving TCP BBR performance over WLAN. IEEE Access, 8, 43344–43354.

    Article  Google Scholar 

  33. 33.

    Taruk, M., Budiman, E., & Setyadi, H. J. (2017). Comparison of TCP variants in long term evolution (LTE). In 2017 5th international conference on electrical, electronics and information engineering (ICEEIE) (pp. 131–134), October 2017. IEEE.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jansi Rani Sella Veluswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sella Veluswami, J.R., Chinnusamy, K., Kumar, K. et al. Improvement of Transmission Control Protocol for High Bandwidth Applications. Wireless Pers Commun (2021). https://doi.org/10.1007/s11277-021-08074-2

Download citation

Keywords

  • Transmission control protocol
  • BBR
  • Congestion control
  • Throughput
  • Pacing gain