Effects of Hardware Impairment on the Cooperative NOMA EH Relaying Network Over Nakagami-m Fading Channels

Abstract

In this paper, we analyze the performance of Non Orthogonal Multiple Access (NOMA) Energy harvesting relaying system in presence of hardware impairments at both the transmitter and receiver over a Nakagami-m fading channel. The proposed system with destinations are allocated different power levels in which the source node communicates with the destinations via an energy harvesting (EH) relay employing a power-splitting relaying architecture and a direct link to the near destination. Moreover, the amplify-and-forward protocol at the EH relay is investigated to evaluate the performance of system. Additionally, the expressions for outage probability are derived, and these analyses are verified by a Monte Carlo simulation. Furthermore, these results are also compared to an orthogonal multiple access (OMA) system. Finally, the effects of various parameters, such as power allocation levels, position of EH relay node, channel coefficients, and hardware impairment levels on the outage performance and throughput of proposed NOMA-EH system and OMA system are investigated. These results demonstrate the advantage of NOMA-EH system as user fairness since multiple destinations compared to the OMA-EH system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Zhu, L., Xiao, Z., Xia, X., & Wu, D. O. (2019). Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access, 7, 116123–116132.

    Article  Google Scholar 

  2. 2.

    Ding, L., Choi, S., & Elkashlan, M. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55, 185–191.

    Article  Google Scholar 

  3. 3.

    Liaqat, M., Noordin, K. A., Abdul Latef, T., et al. (2020). Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview. Wireless Network, 26, 181–203.

    Article  Google Scholar 

  4. 4.

    Gui, G., Sari, H., & Biglieri, E. (2019). A new definition of fairness for non-orthogonal multiple access. IEEE Communications Letters, 23(7), 1267–1271.

    Article  Google Scholar 

  5. 5.

    Al-Hussaibi, W. A., & Ali, F. H. (2019). Efficient user clustering, receive antenna selection, and power allocation algorithms for massive MIMO-NOMA systems. IEEE Access, 7, 31865–31882.

    Article  Google Scholar 

  6. 6.

    Le, T. A., & Kong, H. Y. (2020). Energy harvesting relay-antenna selection in cooperative MIMO-NOMA network over Rayleigh fading. Wireless Network, 26, 2075–2087.

    Article  Google Scholar 

  7. 7.

    Amin, A. A., Narottama, B., & Shin, S. Y. (2019). Capacity enhancement of cooperative NOMA over Rician fading channels with orbital angular momentum. arXiv:1906.09026.

  8. 8.

    Im, G., & Lee, J. H. (2019). Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks. IEEE Communications Letters, 23(4), 692–695.

    Article  Google Scholar 

  9. 9.

    Paradiso, J., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.

    Article  Google Scholar 

  10. 10.

    Varshney, L. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory, 2008. ISIT 2008 (pp. 1612–1616).

  11. 11.

    Nasir, A. A., & Durrani, S. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12, 3622–3636.

    Article  Google Scholar 

  12. 12.

    Nasir, A. A., Tuan, H. D., Duong, T. Q., & Debbah, M. (2019). NOMA throughput and energy efficiency in energy harvesting enabled networks. IEEE Transactions on Communications, 67(9), 6499–6511. https://doi.org/10.1109/TCOMM.2019.2919558.

    Article  Google Scholar 

  13. 13.

    Le, T. A., & Kong, H. Y. (2019). Secrecy analysis of a cooperative NOMA network using an EH untrusted relay. International Journal of Electronics, 106(6), 799–815. https://doi.org/10.1080/00207217.2019.1570554.

    Article  Google Scholar 

  14. 14.

    Wang, X., et al. (2019). Energy efficiency optimization for NOMA-based cognitive radio with energy harvesting. IEEE Access, 7, 139172–139180.

    Article  Google Scholar 

  15. 15.

    Schenk, T. (2008). RF imperfections in high-rate wireless systems: Impact and digital compensation. Berlin: Springer.

    Google Scholar 

  16. 16.

    Costa, E., & Pupolin, S. (2002). m-QAM-OFDM system performance inthe presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.

    Article  Google Scholar 

  17. 17.

    Guo, K., Chen, J., Li, G., & Wang, X. (2014). Outage analysis of cooperative cellular network with hardware impairments. In 2014 International Conference on Information Science, Electronics and Electrical Engineering (Vol. 3, pp. 1416–1420). IEEE.

  18. 18.

    Matthaiou, M., Papadogiannis, A., Bjornson, E., & Debbah, M. (2013). Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Communications Letters, 16(6), 1136–1139.

    Article  Google Scholar 

  19. 19.

    Li, X., et al. (2019). Security and reliability performance analysis of cooperative multi-relay systems with nonlinear energy harvesters and hardware impairments. IEEE Access, 7, 102644–102661. https://doi.org/10.1109/ACCESS.2019.2930664.

    Article  Google Scholar 

  20. 20.

    Solanki, S., Singh, V., & Upadhyay, P. K. (2019). RF energy harvesting in hybrid two-way relaying systems with hardware impairments. IEEE Transactions on Vehicular Technology, 68(12), 11792–11805. https://doi.org/10.1109/TVT.2019.2944248.

    Article  Google Scholar 

  21. 21.

    Li, X., Li, J., Liu, Y., Ding, Z., & Nallanathan, A. (2020). Residual transceiver hardware impairments on cooperative NOMA networks. IEEE Transactions on Wireless Communications, 19(1), 680–695. https://doi.org/10.1109/TWC.2019.2947670.

    Article  Google Scholar 

  22. 22.

    Tang, X., et al. (2019). On the performance of two-way multiple relay non-orthogonal multiple access-based networks with hardware impairments. IEEE Access, 7, 128896–128909. https://doi.org/10.1109/ACCESS.2019.2939436.

    Article  Google Scholar 

  23. 23.

    Simon, M. K., & Alouini, M.-S. (2000). Digital communication over fading channels. New York: Wiley.

    Google Scholar 

  24. 24.

    Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). London: Academic Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thi Anh Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 1

This appendix derives the outage probability \(OP_1\) at Destination 1 in (22–25) from \(P_1\) and \(P_2\) in Eq. (19).

Let consider \(P_1\): According to Eq. (20), the components \(\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_1^2} \right)\) and \(\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_1^2} \right)\) can be negative or positive. Thus, we consider some cases to calculate the OP at \({\mathcal {D}}_1\) as follows:

+ If \(\mathrm{{max}}\left\{ {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1},\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2}} \right\} \le K_1^2\), Eq. (20) can be rewritten as

$$\begin{aligned} {P_1} = \Pr \left[ {{{\left| {{h_1}} \right| }^2}< \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_1^2} \right) }_{< 0}}},{{\left| {{h_1}} \right| }^2}< \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_1^2} \right) }_{ < 0}}}} \right] = 0 \end{aligned}$$
(29)

+ If \(\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} \le K_1^2 \le \frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2}\), Eq. (20) can be rewritten as

$$\begin{aligned} {P_1} = \Pr \left[ {{{\left| {{h_1}} \right| }^2}> \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_1^2} \right) }_{ > 0}}},{{\left| {{h_1}} \right| }^2}< \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_1^2} \right) }_{ < 0}}}} \right] = 0 \end{aligned}$$
(30)

+ If \(\frac{{{\alpha _1}}}{{{\gamma _1}}} \le K_1^2 \le \frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1}\), Eq. (20) can be rewritten as

$$\begin{aligned} {P_1} = \Pr \left[ {{{\left| {{h_1}} \right| }^2}< \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_1^2} \right) }_{ < 0}}},{{\left| {{h_1}} \right| }^2}> \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_1^2} \right) }_{ > 0}}}} \right] = 0 \end{aligned}$$
(31)

+ If \(K_1^2 < \min \left\{ {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1},\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2}} \right\}\), Eq. (20) can be rewritten as

$$\begin{aligned} \begin{array}{l} {P_1} = \Pr \left[ {{{\left| {{h_1}} \right| }^2}> \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_1^2} \right) }_{> 0}}},{{\left| {{h_1}} \right| }^2}> \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{\underbrace{{P_s}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_1^2} \right) }_{> 0}}}} \right] \\ \qquad = \Pr \left[ {{{\left| {{h_1}} \right| }^2} > \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{{P_s}}}\underbrace{\mathrm{{max}}\left\{ {{{\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_1^2} \right) }^{ - 1}},{{\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_1^2} \right) }^{ - 1}}} \right\} }_\varpi } \right] \\ \qquad = 1 - \Pr \left[ {{{\left| {{h_1}} \right| }^2} < \varpi \frac{{d_1^\lambda \sigma _{{D_1}}^2}}{{{P_s}}}} \right] \end{array} \end{aligned}$$
(32)

By applying Eq. (1), \(P_1\) is given by

$$\begin{aligned} {P_1} = \exp \left( { - \frac{{\varpi md_1^\lambda \sigma _{{D_1}}^2P_s^{ - 1}}}{\varOmega }} \right) \sum \limits _{k = 0}^{m - 1} {\left[ {\frac{1}{{k!}}{{\left( {\frac{{\varpi md_1^\lambda \sigma _{{D_1}}^2}}{\varOmega }} \right) }^k}} \right] } \end{aligned}$$
(33)

Let consider \(P_2\): It can be seen that the sign of \(\left( {\frac{{{\alpha _2}{A_2}}}{{{\gamma _2}}} - {A_3}} \right)\) is is the same as the sign of \(\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_{A{F_1}}^2} \right)\), and the sign of \(\left( {\frac{{{\alpha _1}{A_2}}}{{{\gamma _1}}} - {A_5}} \right)\) is the same as the sign of \(\left( {\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} - K_{A{F_1}}^2} \right)\) due to \({A_2} = \frac{{\theta \mu {P_s}}}{{d_0^\lambda d_3^\lambda \sigma _{{D_1}}^2\left( {1 + K_{SR}^2} \right) }}\) , \({A_3} = \frac{{\theta \mu {P_s}\left( {{\alpha _1} + K_{AF1}^2} \right) }}{{d_0^\lambda d_3^\lambda \sigma _{{D_1}}^2\left( {1 + K_{SR}^2} \right) }}\), and \({A_5} = \frac{{\theta \mu {P_s}\left( {\varepsilon {\alpha _2} + K_{AF1}^2} \right) }}{{d_0^\lambda d_3^\lambda \sigma _{{D_1}}^2\left( {1 + K_{SR}^2} \right) }}\).

+ If \({\mathrm{{max}}}\left\{ {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1},\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2}} \right\} \le K_{\mathrm{{A}}{\mathrm{{F}}_1}}^2\), \(P_2\) can be expressed as

$$\begin{aligned} {P_2}&= \Pr \left[ {{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}< \underbrace{\frac{1}{{\frac{{{\alpha _2}{A_2}}}{{{\gamma _2}}} - {A_3}}}}_{< 0}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) ,\nonumber \right. \\&\left. \quad {{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}< \underbrace{\frac{1}{{\frac{{{\alpha _1}{A_2}}}{{{\gamma _1}}} - {A_5}}}}_{ < 0}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) \right] = 0 \end{aligned}$$
(34)

+ If \(\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} \le K_{A{F_1}}^2 \le \frac{{{\alpha _1}}}{{{\gamma _1}}}\) , \(P_2\) can be expressed as

$$\begin{aligned} {P_2}&= \Pr \left[ {{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}< \underbrace{\frac{1}{{\frac{{{\alpha _2}{A_2}}}{{{\gamma _2}}} - {A_3}}}}_{ < 0}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) ,\nonumber \right. \\&\left. \quad {{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}> \underbrace{\frac{1}{{\frac{{{\alpha _1}{A_2}}}{{{\gamma _1}}} - {A_5}}}}_{ > 0}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) \right] = 0 \end{aligned}$$
(35)

+ If \(\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2} \le K_{A{F_1}}^2 \le \frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1}\) , \(P_2\) can be expressed as

$$\begin{aligned} {P_2}&= \Pr \left[ {{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}> \underbrace{\frac{1}{{\frac{{{\alpha _2}{A_2}}}{{{\gamma _2}}} - {A_3}}}}_{ > 0}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) ,\nonumber \right. \\&\left. \quad {{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}< \underbrace{\frac{1}{{\frac{{{\alpha _1}{A_2}}}{{{\gamma _1}}} - {A_5}}}}_{ < 0}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) \right] = 0 \end{aligned}$$
(36)

+ If \(K_{A{F_1}}^2 < \min \left\{ {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1},\frac{{{\alpha _1}}}{{{\gamma _1}}} - \varepsilon {\alpha _2}} \right\}\) , \(P_2\) can be expressed as

$$\begin{aligned} {P_2}&= \Pr \left[ {{{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}> \frac{1}{{\frac{{{\alpha _2}{A_2}}}{{{\gamma _2}}} - {A_3}}}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) ,{{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}> \frac{1}{{\frac{{{\alpha _1}{A_2}}}{{{\gamma _1}}} - {A_5}}}\left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) } \right] \nonumber \\&= \Pr \left[ {{{\left| {{h_0}} \right| }^2}{{\left| {{h_3}} \right| }^2}> \left( {{A_4}{{\left| {{h_3}} \right| }^2} + 1} \right) \underbrace{\max \left( {\frac{1}{{\frac{{{\alpha _2}{A_2}}}{{{\gamma _2}}} - {A_3}}},\frac{1}{{\frac{{{\alpha _1}{A_2}}}{{{\gamma _1}}} - {A_5}}}} \right) }_\phi } \right] \nonumber \\&= \Pr \left[ {{{\left| {{h_0}} \right| }^2} > \phi \left( {{A_4} + \frac{1}{{{{\left| {{h_3}} \right| }^2}}}} \right) } \right] \nonumber \\&= 1 - \Pr \left[ {X < \phi \left( {{A_4} + \frac{1}{Y}} \right) } \right] \nonumber \\&= 1 - \int \limits _0^{ + \infty } {{f_Y}\left( y \right) {F_X}\left( {\phi {A_4} + \frac{\phi }{y}} \right) dy} \end{aligned}$$
(37)

where \(X = {\left| {{h_0}} \right| ^2}\) , \(Y = {\left| {{h_3}} \right| ^2}\) .

By substituting Eqs. (1) and (2) to (A11), Equation in (A11) can be expressed as

$$\begin{aligned} {P_2}&= 1 - \int \limits _0^{ + \infty } {\frac{{{n^n}{y^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{e^{ - \frac{{ny}}{{{\varOmega _2}}}}}\left( {1 - {e^{ - \frac{{m\left( {\phi {A_4} + \frac{\phi }{y}} \right) }}{{{\varOmega _0}}}}}\sum \limits _{k = 0}^{m - 1} {\left[ {\frac{1}{{k!}}{{\left( {\frac{{m\left( {\phi {A_4} + \frac{\phi }{y}} \right) }}{{{\varOmega _0}}}} \right) }^k}} \right] } } \right) dy} \nonumber \\&= 1 - \underbrace{\int \limits _0^{ + \infty } {\frac{{{n^n}{y^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{e^{ - \frac{{ny}}{{{\varOmega _2}}}}}dy} }_{{I_1}} + \underbrace{\int \limits _0^{ + \infty } {\frac{{{n^n}{y^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{e^{ - \frac{{ny}}{{{\varOmega _2}}} - \frac{{m\left( {\phi {A_4} + \frac{\phi }{y}} \right) }}{{{\varOmega _0}}}}}\sum \limits _{k = 0}^{m - 1} {\left[ {\frac{1}{{k!}}{{\left( {\frac{{m\left( {\phi {A_4} + \frac{\phi }{y}} \right) }}{{{\varOmega _0}}}} \right) }^k}} \right] } dy} }_{{I_2}}\nonumber \\&= 1 - {I_1} + {I_2} \end{aligned}$$
(38)

Using Eq. [24, Eq.(3.351)], \(I_1\) can be formulated as

$$\begin{aligned} {I_1} = \frac{{{n^n}}}{{\varGamma \left( n \right) \varOmega _2^n}}\int \limits _0^{ + \infty } {{y^{n - 1}}{e^{ - \frac{{ny}}{{{\varOmega _2}}}}}dy} = \frac{{{n^n}\left( {n - 1} \right) !{{\left( {\frac{n}{{{\varOmega _2}}}} \right) }^{ - n}}}}{{\varGamma \left( n \right) \varOmega _2^n}} = \frac{{\left( {n - 1} \right) !}}{{\varGamma \left( n \right) }} = 1 \end{aligned}$$
(39)

Considering \(I_2\) as follows

$$\begin{aligned} {I_2}&= \int \limits _0^{ + \infty } {\frac{{{n^n}{y^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{ny}}{{{\varOmega _2}}} - \frac{{m\left( {\phi {A_4} + \frac{\phi }{y}} \right) }}{{{\varOmega _0}}}}}\sum \limits _{k = 0}^{m - 1} {\left[ {\frac{1}{{k!}}{{\left( {\frac{{m\left( {\phi {A_4} + \frac{\phi }{y}} \right) }}{{{\varOmega _0}}}} \right) }^k}} \right] } dy} \nonumber \\&= \frac{{{n^n}{e^{ - \frac{{m\phi {A_4}}}{{{\varOmega _0}}}}}}}{{\varGamma \left( n \right) \varOmega _2^n}}\sum \limits _{k = 0}^{m - 1} {\left[ {\frac{{{m^k}}}{{k!\varOmega _0^k}}} \right] } \int \limits _0^{ + \infty } {{y^{n - 1}}{{\left( {\phi {A_4} + \frac{\phi }{y}} \right) }^k}{{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{ny}}{{{\varOmega _2}}} - \frac{{m\phi }}{{{\varOmega _0}y}}}}dy} \end{aligned}$$
(40)

Applying the Newton binomial as \({\left( {a + b} \right) ^k} = \sum \limits _{i = 0}^k {\left( \begin{array}{l} k\\ i \end{array} \right) } {a^{k - i}}{b^i}\), and using [24, Eq.(3.471.9)] \(I_2\) can be expressed as

$$\begin{aligned} {I_2}&= \frac{{{n^n}{e^{ - \frac{{m\phi {A_4}}}{{{\varOmega _0}}}}}}}{{\varGamma \left( n \right) \varOmega _2^n}}\sum \limits _{k = 0}^{m - 1} {\sum \limits _{i = 0}^k {\left( \begin{array}{l} k\\ i \end{array} \right) \frac{{{m^k}}}{{k!\varOmega _0^k}}{{\left( {\phi {A_4}} \right) }^{k - i}}{\phi ^i}} } \int \limits _0^{ + \infty } {{y^{n - i - 1}}{{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{ny}}{{{\varOmega _2}}} - \frac{{m\phi }}{{{\varOmega _0}y}}}}dy} \nonumber \\&= 2\frac{{{e^{ - \frac{{m\phi {A_4}}}{{{\varOmega _0}}}}}}}{{\varGamma \left( n \right) }}\sum \limits _{k = 0}^{m - 1} {\sum \limits _{i = 0}^k {\left( \begin{array}{l} k\\ i \end{array} \right) \frac{{{m^{k + \frac{{n - i}}{2}}}{n^{n - \frac{{n - i}}{2}}}}}{{k!\varOmega _0^{k + \frac{{n - i}}{2}}\varOmega _2^{n - \frac{{n - i}}{2}}}}{{\left( {\phi {A_4}} \right) }^{k - i}}{\phi ^{i + \frac{{n - i}}{2}}}} } {K_{n - i}}\left( {2\sqrt{\frac{{mn\phi }}{{{\varOmega _0}{\varOmega _2}}}} } \right) \end{aligned}$$
(41)

where \(K_i[.]\) is the Bessel function. In fact, because of the value of hardware impairment level of \(K_{A{F_1}}^2 > K_1^2\) , due to the combination of result \(P_1\) and \(P_2\) we obtain \(OP_1\) at \({\mathcal {D}}_1\) as in (22–25). This ends the Proof of Theorem 1.

Appendix 2: Proof of Theorem 2

This appendix derives OP in (27) at \({\mathcal {D}}_2\) of the proposed system with the EH relaying node using AF protocol. According to (26) shown that \(\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_{AF}^2} \right)\) can be negative or positive, thus we consider two cases as follows:

+ If \(\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} \le K_{AF}^2\) , Eq. (26) can be expressed as

$$\begin{aligned} OP_2^{AF}&= \Pr \left[ {{{\left| {{h_0}} \right| }^2} > \underbrace{\frac{{{b_2}\left( {1 + K_{R{D_2}}^2} \right) }}{{{b_1}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_{AF}^2} \right) }} + \left( {1 + K_{SR}^2} \right) \frac{1}{{{b_1}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_{AF}^2} \right) {{\left| {{h_2}} \right| }^2}}}}_{ < 0}} \right] = 1 \end{aligned}$$
(42)

+ If \(\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} > K_{AF}^2\), Eq. (26) can be expressed as

$$\begin{aligned} OP_2^{AF}&= \Pr \left[ {{{\left| {{h_0}} \right| }^2} > \frac{{{b_2}\left( {1 + K_{R{D_2}}^2} \right) }}{{{b_1}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_{AF}^2} \right) }} + \frac{{1 + K_{SR}^2}}{{{b_1}\left( {\frac{{{\alpha _2}}}{{{\gamma _2}}} - {\alpha _1} - K_{AF}^2} \right) {{\left| {{h_2}} \right| }^2}}}} \right] \nonumber \\&= 1 - \Pr \left[ {X < {B_1} + \frac{{{B_2}}}{Z}} \right] \nonumber \\&= 1 - \int \limits _0^{ + \infty } {{f_Z}\left( z \right) {F_X}\left( {{B_1} + \frac{{{B_2}}}{z}} \right) dz} \end{aligned}$$
(43)

where \(Z = {\left| {{h_2}} \right| ^2}\). By substituting (1) and (2) to (B2), Equation in (B2) can be expressed as

$$\begin{aligned} OP_2^{\mathrm{{AF}}}&= 1 - \int \limits _0^{ + \infty } {\frac{{{n^n}{z^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{nz}}{{{\varOmega _2}}}}}\left( {1 - {{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{m\left( {{B_1} + \frac{{{B_2}}}{z}} \right) }}{{{\varOmega _0}}}}}\sum \limits _{k = 0}^{m - 1} {\left[ {\frac{1}{{k!}}{{\left( {\frac{{m\left( {{B_1} + \frac{{{B_2}}}{z}} \right) }}{{{\varOmega _0}}}} \right) }^k}} \right] } } \right) dz}\nonumber \\&= 1 - \underbrace{\int \limits _0^{ + \infty } {\frac{{{n^n}{z^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{nz}}{{{\varOmega _2}}}}}dy} }_{{I_3}} + \underbrace{\int \limits _0^{ + \infty } {\frac{{{n^n}{z^{n - 1}}}}{{\varGamma \left( n \right) \varOmega _2^n}}{{\mathop {\mathrm{e}}\nolimits } ^{ - \frac{{nz}}{{{\varOmega _2}}} - \frac{{m\left( {{B_1} + \frac{{{B_2}}}{z}} \right) }}{{{\varOmega _0}}}}}\sum \limits _{k = 0}^{m - 1} {\left[ {\frac{1}{{k!}}{{\left( {\frac{{m\left( {{B_1} + \frac{{{B_2}}}{z}} \right) }}{{{\varOmega _0}}}} \right) }^k}} \right] } dz} }_{{I_4}}\nonumber \\&= 1 - {I_3} + {I_4} \end{aligned}$$
(44)

\(I_3\) and \(I_4\) components are formulated similar to the calculate \(I_1\) and \(I_2\) in “Appendix 1”. Thus, we obtain OP at \({\mathcal {D}}_2\) as in (27). This ends the Proof of Theorem 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, T.A., Kong, H.Y. Effects of Hardware Impairment on the Cooperative NOMA EH Relaying Network Over Nakagami-m Fading Channels. Wireless Pers Commun 116, 3577–3597 (2021). https://doi.org/10.1007/s11277-020-07866-2

Download citation

Keywords

  • Non-orthogonal multiple access
  • Energy harvesting
  • Hardware impairment
  • Nakagami-m fading
  • Orthogonal multiple access