Strong Interference Alignment

Abstract

Interference alignment (IA) adjusts signaling scheme such that all interfering signals are squeezed in interference subspace, and obtains the maximum degrees of freedom in an interference channel. However, IA mostly achieves its performance via infinite extension of the channel, which is a major challenge in practical systems. In this paper, we schedule part of interference to be strong and achieve perfect IA within limited number of channel extensions. A single-hop 3 user single antenna interference channel (IFC) is considered and it is shown that one of the interfering signal streams needs to be strong so that perfect IA is feasible. Practical implementation of the proposed scheme is discussed in detail for the case of two extensions of the 3 user single antenna IFC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Motahari, A. S., & Khandani, A. K. (2009). Capacity bounds for the Gaussian interference channel. IEEE Transactions on Information Theory, 55(2), 620–643.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Geng, C., Naderializadeh, N., Avestimehr, S., & Jafar, S. A. (2015). On the optimality of treating interference as noise. IEEE Transactions on Information Theory, 61(4), 1753–1767.

    MathSciNet  Article  Google Scholar 

  3. 3.

    Gherekhloo, S., Chaaban, A., & Sezgin, A. (2017). Expanded GDoF-optimality regime of treating interference as noise in the \(M\times 2\) X-channel. IEEE Transactions on Information Theory, 63(1), 355–376.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Carleial, A. B. (1975). A case where interference does not reduce capacity. IEEE Transactions on Information Theory, 21, 569–570.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Sridharan, S., Jafarian, A., Vishwanath, S., & Jafar, S. A. (2008). Capacity of symmetric K-user Gaussian very strong interference channels. In Proceedings of global communications conference (pp. 1–5). IEEE.

  6. 6.

    Jafar, S. A., & Vishwanath, S. (2010). Generalized degrees of freedom of the symmetric Gaussian K user interference channel. IEEE Transactions on Information Theory, 56(7), 3297–3303.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ordentlich, O., Erez, U., & Nazer, B. (2014). The approximate sum capacity of the symmetric Gaussian K-user interference channel. IEEE Transactions on Information Theory, 60(6), 3450–3482.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Zhao, N., Yu, F. R., Jin, M., Yan, Q., & Leung, V. C. M. (2016). Interference alignment and its applications: A survey, research issues, and challenges. IEEE Communications Surveys and Tutorials, 18(3), 1779–1803.

    Article  Google Scholar 

  9. 9.

    Dong, A., Zhang, H., Yuan, D., & Zhou, X. (2016). Interference alignment transceiver design by minimizing the maximum mean square error for MIMO interfering broadcast channel. IEEE Transactions on Vehicular Technology, 65(8), 6024–6037.

    Article  Google Scholar 

  10. 10.

    Ntranos, V., Maddah-Ali, M. A., & Caire, G. (2015). Cellular interference alignment. IEEE Transactions on Information Theory, 61(3), 1194–1217.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Tang, J., So, D. K. C., Shojaeifard, A., Wong, K. K., & Wen, J. (2017). Joint antenna selection and spatial switching for energy efficient MIMO SWIPT system. IEEE Transactions on Wireless Communications, 16(7), 4754–4769.

    Article  Google Scholar 

  12. 12.

    Maddah-Ali, M. A., Motahari, A. S., & Khandani, A. K. (2008). Communication over MIMO X channels: Interference alignment, decomposition, and performance analysis. IEEE Transactions on Information Theory, 54(8), 3457–3470.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Jafar, S. A., & Shamai, S. (2008). Degrees of freedom region of the MIMO X channel. IEEE Transactions on Information Theory, 54(1), 151–170.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gomadam, K., Cadambe, V. R., & Jafar, S. A. (2011). A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Transactions on Information Theory, 57(6), 3309–3322.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Razaviyayn, M., Lyubeznik, G., & Luo, Z.-Q. (2012). On the degrees of freedom achievable through interference alignment in a MIMO interference channel. IEEE Transactions on Signal Processing, 60(2), 812–821.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nazer, B., Gastpar, M., Jafar, S. A., & Vishwanath, S. (2012). Ergodic interference alignment. IEEE Transactions on Information Theory, 58(10), 6355–6371.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Samadi, Z., Vakili, V. T., & Haddadi, F. (2017). Channel aided interference alignment. IET Signal Processing, 11(7), 854–860.

    Article  Google Scholar 

  19. 19.

    Vanka, S., Srinivasa, S., Gong, Z., Vizi, P., Stamatiou, K., & Haenggi, M. (2012). Superposition coding strategies: Design and experimental evaluation. IEEE Transactions on Wireless Communications, 11(7), 2628–2639.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zainalabedin Samadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samadi, Z., Vakili, V.T. & Haddadi, F. Strong Interference Alignment. Wireless Pers Commun 116, 3397–3411 (2021). https://doi.org/10.1007/s11277-020-07858-2

Download citation

Keywords

  • Interference alignment
  • Interference channel
  • Degrees of freedom
  • Strong interference