New Approximate Expressions for αημ and ακμ Fading Channels Subjected to Inverse Gaussian Shadowing With Applications


In this paper, new approximate expressions of probability density functions, tth-moments and moment generating functions of the instantaneous SNR for αημ and ακμ fading channels subjected to Inverse Gaussian shadowing have been derived. The obtained statistics have been applied to ascertain Amount of Fading (AoF), channel capacity per unit bandwidth, and Average Symbol Error Rate (ASER). The performance of these matrices has been studied under various channel parameters. To judge the performance of multi-hop communication, Source to Sink Average Bit Error Rate (S2S-ABER) has been calculated for two individual cases: (i) independent and identical distributed and (ii) independent and non-identical distributed multi-hop links. Moreover, the performance of multi-hop IEEE 802.15.4 Zigbee and IEEE 802.15.1 Bluetooth radios have also been analyzed over these channels. Simulations have been performed to validate the derived expressions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Abdi, A., & Kaveh, M. (1998). K distribution: An appropriate substitute for rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  2. 2.

    Al-Hmood, H. (2017). A mixture gamma distribution based performance analysis of switch and stay combining scheme over \(\alpha -\kappa -\mu \) shadowed fading channels. In 2017 annual conference on new trends in information communications technology applications (NTICT) (pp. 292–297).

  3. 3.

    Al-Hmood, H., & Al-Raweshidy, H. (2016). Unified modeling of composite \(kappa-mu/\)gamma, \(eta-mu\)/gamma, and \(alpha-mu/\)gamma fading channels using a mixture gamma distribution with applications to energy detection. IEEE Antennas and Wireless Propagation Letters, PP(99), 1–1.

    Article  Google Scholar 

  4. 4.

    Atapattu, S., Tellambura, C., & Jiang, H. (2010). Representation of composite fading and shadowing distributions by using mixtures of gamma distributions. In: 2010 IEEE wireless communication and networking conference (pp. 1–5).

  5. 5.

    Badarneh, O. S., & Aloqlah, M. S. (2016). Performance analysis of digital communication systems over \(\alpha {-}\eta {-}\mu \) fading channels. IEEE Transactions on Vehicular Technology, 65(10), 7972–7981.

    Article  Google Scholar 

  6. 6.

    Chatzidiamantis, N.D., Sandalidis, H.G., Karagiannidis, G.K., & Kotsopoulos, S.A. (2011). On the inverse-gaussian shadowing. In 2011 international conference on communications and information technology (ICCIT) (pp. 142–146).

  7. 7.

    Chauhan, P. S., & Soni, S. K. (2019). Average sep and channel capacity analysis over generic/ig composite fading channels: A unified approach. Physical Communication, 34, 9–18.

    Article  Google Scholar 

  8. 8.

    Chauhan, P. S., Negi, P., & Soni, S. K. (2018). A unified approach to modelling of probability of detection over \(\alpha -\mu /{IG}\), \(\kappa -\mu /{IG}\), and \(\eta -\mu /{IG}\) composite fading channels with application to co-operative system. AEU-International Journal of Electronics and Communications, 87, 33–42.

    Article  Google Scholar 

  9. 9.

    Dey, I., Messier, G. G., & Magierowski, S. (2014). Joint fading and shadowing model for large office indoor wlan environments. IEEE Transactions on Antennas and Propagation, 62(4), 2209–2222.

    Article  Google Scholar 

  10. 10.

    Fraidenraich, G., & Yacoub, M.D. (2006). The \(\alpha -\kappa -\mu \) and \(\alpha -\eta -\mu \) fading distributions. In 2006 IEEE ninth international symposium on spread spectrum techniques and applications (pp. 16–20).

  11. 11.

    Goldsmith, A. (2005). Wireless Communications. Cambridge University Press,.

    Article  Google Scholar 

  12. 12.

    Goswami, A., & Kumar, A. (2017). Performance analysis of wsn links over \(\eta -\mu \) and \(\kappa -\mu \) generalized fading channels. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1936–1938).

  13. 13.

    Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products. Table of integrals, series, and products series. London: Elsevier Science.

    Google Scholar 

  14. 14.

    Kumar, S., Chauhan, P. S., Raghuwanshi, P., & Kaur, M. (2018). Ed performance over \(\alpha -\eta -\mu / {IG}\) and \(\alpha -\kappa -\mu / {IG}\) generalized fading channels with diversity reception and cooperative sensing: A unified approach. AEU-International Journal of Electronics and Communications, 97, 273–279.

    Article  Google Scholar 

  15. 15.

    Laourine, A., Alouini, M. S., Affes, S., & Stephenne, A. (2009). On the performance analysis of composite multipath/shadowing channels using the g-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.

    Article  Google Scholar 

  16. 16.

    Marković, A., Perić, Z., sić, D. D., Smilić, M., & Jaksić, B. (2015). Level crossing rate of macrodiversity system over composite gamma shadowed alpha-kappa-mu multipath fading channel. Facta Universitatis, Series: Automatic Control and Robotics, 14(2), 99–109.

    MathSciNet  Google Scholar 

  17. 17.

    Morgado, E., Mora-Jimenez, I., Vinagre, J., Ramos, J., & Caamano, A. (2010). End-to-end average ber in multihop wireless networks over fading channels. IEEE Transactions on Wireless Communications, 9(8), 2478–2487.

    Article  Google Scholar 

  18. 18.

    Paris, J. F. (2014). Statistical characterization of \(\kappa { - }\mu \) shadowed fading. IEEE Transactions on Vehicular Technology, 63(2), 518–526.

    Article  Google Scholar 

  19. 19.

    Rana, V., Chauhan, P. S., Soni, S. K., & Bhatt, M. (2017). A new closed-form of asep and channel capacity with mrc and selection combining over inverse gaussian shadowing. AEU-International Journal of Electronics and Communications, 74, 107–115.

    Article  Google Scholar 

  20. 20.

    Shankar, P. M. (2012). A nakagami-n-gamma model for shadowed fading channels. Wireless Personal Communications, 64(4), 665–680.

    Article  Google Scholar 

  21. 21.

    Sofotasios, P.C., & Freear, S. (2011a). The \(\alpha -\kappa -\mu /gamma\) distribution: A generalized non-linear multipath/shadowing fading model. In 2011 annual IEEE India conference (pp. 1–6).

  22. 22.

    Sofotasios, P.C., & Freear, S. (2011b). On the \(\kappa -\mu \)/gamma composite distribution: A generalized multipath/shadowing fading model. In 2011 SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC 2011) (pp. 390–394).

  23. 23.

    Sofotasios, P.C., & Freear, S. (2015). A generalized non-linear composite fading model. CoRR abs/1505.03779.

  24. 24.

    Sofotasios, P.C., Tsiftsis, T.A., Ghogho, M., Wilhelmsson, L.R., & Valkama, M. (2013). The \(\eta -\mu \)/ig distribution: A novel physical multipath/shadowing fading model. In 2013 IEEE international conference on communications (ICC) (pp. 5715–5719).

  25. 25.

    Stamenović, G., Panić, S. R., Rančić, D., & Stefanović, Č. (2014). Stefanović M (2014) Performance analysis of wireless communication system in general fading environment subjected to shadowing and interference. EURASIP Journal on Wireless Communications and Networking, 1, 124.

    Article  Google Scholar 

  26. 26.

    Stüber, G. (2011). Principles of mobile communication. Berlin: Springer.

    Google Scholar 

  27. 27.

    Yoo, S.K., Cotton, S.L., Sofotasios, P.C., Matthaiou, M., Valkama, M., & Karagiannidis, G.K. (2015a). The \(\kappa -\mu \)/ inverse gamma fading model. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 425–429).

  28. 28.

    Yoo, S.K., Sofotasios, P.C., Cotton, S.L., Matthaiou, M., Valkama, M., & Karagiannidis, G.K. (2015b). The \(\eta -\mu \) / inverse gamma composite fading model. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 166–170).

  29. 29.

    Yoo, S. K., Cotton, S. L., Sofotasios, P. C., & Freear, S. (2016). Shadowed fading in indoor off-body communication channels: A statistical characterization using the \(\kappa \)-\(\mu \) /gamma composite fading model. IEEE Transactions on Wireless Communications, 15(8), 5231–5244.

    Article  Google Scholar 

  30. 30.

    Yoo, S. K., Bhargav, N., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., et al. (2018). The \(\kappa \)-\(\mu \)/inverse gamma and \(\eta \)-\(\mu \)/inverse gamma composite fading models: Fundamental statistics and empirical validation. IEEE Transactions on Communications,.

    Article  Google Scholar 

Download references


This publication is an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Author information



Corresponding author

Correspondence to Ashish Goswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goswami, A., Kumar, A. New Approximate Expressions for αημ and ακμ Fading Channels Subjected to Inverse Gaussian Shadowing With Applications. Wireless Pers Commun (2020).

Download citation


  • Shadowed fading
  • Inverse Gaussian shadowing
  • αημ Inverse Gaussian
  • ακμ Inverse
  • Average symbol error rate
  • Source to sink average bit error rate