G2A Communication Channel Modeling and Characterization Using Confocal Prolates

Abstract

Characterization of radio environment is an important field of research that helps to analyze the limiting features of the propagation environment and leads to develop a realistic channel model. This paper proposes an appropriate multipath channel model for various ground-to-air (G2A) communication scenarios. An intensive review of the existing literature on A2G/G2A channel models is presented along with a critical analysis with appropriate comments wherever needed. It is observed that most of the research literature supposedly model G2A channels interchangeably in the same manner as that of land mobile communication links. G2A communications systems are generally equipped with directional antennas for dedicated coverage to flying aircrafts that benefits in increasing range and signal strength while restraining interfering signals coming through scattering objects around ground station (G). This research analyzes G2A multipath channel and thus proposes a geometrically-based physical G2A multipath channel model. The proposed channel model clearly justifies the existence of multipath environment in G2A communication due to the existence of aircrafts in the vicinity of the intended aircraft. This model is based on a three-dimensional confocal prolate spheroids and uses the principle of single-bounce multipath geometry. Moreover, the model gives an insight to analyze multipath multiuser G2A communication in wide-beam and narrow-beam communication link scenarios. This model is equally applicable to the networks of passenger aircrafts, flocks of jet fighters and mesh of UAV drones. This model can be used to analyze the performance of high data-rate communication links with high mobile speeds over sparsely distributed multipath channels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Afonso, L., Souto, N., Sebastiao, P., Ribeiro, M., Tavares, T., & Marinheiro, R. (2016). Cellular for the skies: Exploiting mobile network infrastructure for low altitude air-to-ground communications. IEEE Aerospace and Electronic Systems Magazine, 31(8), 4–11.

    Google Scholar 

  2. 2.

    Ahmed, N., Kanhere, S. S., & Jha, S. (2016). On the importance of link characterization for aerial wireless sensor networks. IEEE Communications Magazine, 54(5), 52–57.

    Google Scholar 

  3. 3.

    Air Transport Action Group. (2016). Aviation benefits beyond borders. https://aviationbenefits.org/media/149668/abbb2016_full_a4_web.pdf. Accessed August 5, 2018.

  4. 4.

    Albani, M., Carluccio, G., & Pathak, P. H. (2015). A uniform geometrical theory of diffraction for vertices formed by truncated curved wedges. IEEE Transactions on Antennas and Propagation, 63(7), 3136–3143.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Amorim, R., Nguyen, H., Mogensen, P., Kovács, I. Z., Wigard, J., & Sørensen, T. B. (2017). Radio channel modeling for uav communication over cellular networks. IEEE Wireless Communications Letters, 6(4), 514–517.

    Google Scholar 

  6. 6.

    An, Y., Wang, D., & Chen, R. (2014). Improved multilevel physical optics algorithm for fast computation of monostatic radar cross section. IET Microwaves, Antennas & Propagation, 8(2), 93–98.

    Google Scholar 

  7. 7.

    Apaydin, G., Hacivelioglu, F., Sevgi, L., Gordon, W. B., & Ufimtsev, P. Y. (2016). Diffraction at a rectangular plate: First-order ptd approximation. IEEE Transactions on Antennas and Propagation, 64(5), 1891–1899.

    Google Scholar 

  8. 8.

    Arnaud, D., Brousseau, C., & Bourdillon, A. (2000). Study of flight route effects on aircraft rcs signature at vhf frequencies by means of wire grid models. In Record of the IEEE 2000 international radar conference [Cat. No. 00CH37037], (pp. 231–235). IEEE.

  9. 9.

    Arti, M. K., & Shimpee, S. (2018). Imperfect csi-based large mimo systems. IET Communications, 12(10), 1223–1229.

    Google Scholar 

  10. 10.

    Baltzis, K., & Sahalos, J. (2009). A simple 3-d geometric channel model for macrocell mobile communications. Wireless Personal Communications, 51(2), 329–347.

    Google Scholar 

  11. 11.

    Bello, P. A. (1973). Aeronautical channel characterization. IEEE Transactions on Communications, 21(5), 548–563.

    Google Scholar 

  12. 12.

    Bennani, Y., Comblet, F., & Khenchaf, A. (2012). Rcs of complex targets: Original representation validated by measurements-application to isar imagery. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3882–3891. https://doi.org/10.1109/TGRS.2012.2186972.

    Article  Google Scholar 

  13. 13.

    Blandino, S., Kaltenberger, F., & Feilen, M. (2015). Wireless channel simulator testbed for airborne receivers. In IEEE globecom workshops (GC Wkshps), (pp. 1–6).

  14. 14.

    Bluemm, C., Heller, C., Fourestie, B., & Weigel, R. (2013). Air-to-ground channel characterization for OFDM communication in c-band. In Prceedings of the 7th international conference on signal processing and communication systems (ICSPCS).

  15. 15.

    Bucher, M. L. (1992). Simulation of multipath fading/ghosting for analog and digital television transmission in broadcast channels. IEEE Transactions on Broadcasting, 38(4), 256–262.

    Google Scholar 

  16. 16.

    Burke, G., & Poggio, A. (1977). Numerical electromagnetic code-method of moments, part i: Program description, theory. Technical Document, 116.

  17. 17.

    Chamberlin, K. (1986). The effect of tree cover on air-ground, VHF propagation path loss. IEEE Transactions on Communications, 34(9), 958–962.

    Google Scholar 

  18. 18.

    Chen, C., & Cheng, X. (2020). Dealing with imperfect csi. In Resource allocation for OFDMA systems, (pp. 83–129). Springer.

  19. 19.

    Chen, J., Daneshrad, B., & Zhu, W. (2011). Mimo performance evaluation for airborne wireless communication systems. In 2011 IEEE military communications conference (MILCOM), (pp. 1827–1832).

  20. 20.

    Cheng, M., C., Hsiao, H., Kung, H. T., & Vlah, D. (2006). Performance measurement of 802.11a wireless links from uav to ground nodes with various antenna orientations. In Proceedings of the 15th international conference on computer communications and networks (pp. 303–308).

  21. 21.

    Chew, W. C., Michielssen, E., Song, J., & Jin, J. M. (2001). Fast and efficient algorithms in computational electromagnetics. Norwood: Artech House Inc.

    Google Scholar 

  22. 22.

    Cid, E. L., Alejos, A. V., & Sanchez, M. G. (2016). Signaling through scattered vegetation: Empirical loss modeling for low elevation angle satellite paths obstructed by isolated thin trees. IEEE Vehicular Technology Magazine, 11(3), 22–28.

    Google Scholar 

  23. 23.

    David, A., Brousseau, C., & Bourdillon, A. (2003). Simulations and measurements of a radar cross section of a boeing 747–200 in the 20–60 mhz frequency band. Radio Science, 38(4), 3–1–3–4.

    Google Scholar 

  24. 24.

    Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2002). Small-scale fading for high-altitude platform (hap) propagation channels. IEEE Journal on Selected Areas in Communications, 20(3), 641–647.

    Google Scholar 

  25. 25.

    Elnoubi, S. M. (1992). A simplified stochastic model for the aeronautical mobile radio channel. In IEEE 42nd vehicular technology conference, (pp. 960–963). IEEE.

  26. 26.

    Ertel, R. B., Cardieri, P., Sowerby, K. W., Rappaport, T. S., & Reed, J. H. (1998). Overview of spatial channel models for antenna array communication systems. IEEE Personal Communications, 5(1), 10–22.

    Google Scholar 

  27. 27.

    Ertel, R. B., & Reed, J. H. (1999). Angle and time of arrival statistics for circular and elliptical scattering models. IEEE Journal on Selected Areas in Communications, 17(11), 1829–1840.

    Google Scholar 

  28. 28.

    Essaadali, R., & Kouki, A. (2016) A new simple unmanned aerial vehicle doppler effect rf reducing technique. In MILCOM 2016–2016 IEEE military communications conference (pp. 1179–1183).

  29. 29.

    Feng, Q., McGeehan, J., Tameh, E. K., & Nix, A. R. (2006). Path loss models for air-to-ground radio channels in urban environments. In IEEE 63rd vehicular technology conference, vol. 6 (pp. 2901–2905). IEEE.

  30. 30.

    Ferguson, C. C. (1979). Intersections of ellipsoids and planes of arbitrary orientation and position. Journal of the International Association for Mathematical Geology, 11(3), 329–336.

    Google Scholar 

  31. 31.

    Gao, X., Chen, Z., & Hu, Y. (2013). Analysis of unmanned aerial vehicle mimo channel capacity based on aircraft attitude. WSEAS Transactions on Information Science and Applications, 10(2), 58–67.

    Google Scholar 

  32. 32.

    Garrido, E. E. J., & Jenn, D. C. (2000). A matlab physical optics rcs prediction code. https://calhoun.nps.edu/handle/10945/37432.

  33. 33.

    Geise, R., Enders, A., Vahle, H., & Spieker, H. (2008). Scaled measurements of instrument-landing-system disturbances due to large taxiing aircraft. IEEE Transactions on Electromagnetic Compatibility, 50(3), 485–490.

    Google Scholar 

  34. 34.

    Goddemeier, N., Daniel, K., & Wietfeld, C. (2010) Coverage evaluation of wireless networks for unmanned aerial systems. In Proceedings of the 2010 IEEE globecom workshops (pp. 1760–1765).

  35. 35.

    Goddemeier, N., Daniel, K., & Wietfeld, C. (2012). Role-based connectivity management with realistic air-to-ground channels for cooperative uavs. IEEE Journal on Selected Areas in Communications, 30(5), 951–963.

    Google Scholar 

  36. 36.

    GoGo. (2018). How gogo is well prepared to improve 2Ku now and in the future. https://concourse.gogoair.com/gogo-well-prepared-improve-2ku-now-future/. Accessed August 5, 2018

  37. 37.

    GoGo. (2014). Gogo atg-4-what is it, and how does it work? https://concourse.gogoair.com/gogo-atg-4-work/. Accessed August 5, 2018.

  38. 38.

    Gulfam, S., Nawaz, S., Ahmed, A., Patwary, M., & Ni, Q. (2016). A novel 3d analytical scattering model for air-to-ground fading channels. Applied Sciences, 6(8), 207.

    Google Scholar 

  39. 39.

    Gulfam, S. M., Nawaz, S. J., Ahmed, A., & Patwary, M. N. (2016) Analysis on multipath shape factors of air-to-ground radio communication channels. In Proceedings of the 2016 wireless telecommunications symposium (WTS), (pp. 1–5).

  40. 40.

    Gulfam, S. M., Nawaz, S. J., Patwary, M. N., & Abdel-Maguid, M. (2015). On the spatial characterization of 3-D air-to-ground radio communication channels. In Proceedings of IEEE, international conference on communications (pp. 2924–2930).

  41. 41.

    Haas, E. (2002). Aeronautical channel modeling. IEEE Transactions on Vehicular Technology, 51(2), 254–264.

    Google Scholar 

  42. 42.

    Hao, J., Jie, Z., & Kikuchi, H. (2014). Angle and time of arrival statistics for a 3-d pie-cellular-cut scattering channel model. Wireless Personal Communications, 78(2), 851–865.

    Google Scholar 

  43. 43.

    Holis, J., & Pechac, P. (2008). Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas. IEEE Transactions on Antennas and Propagation, 56(4), 1078–1084.

    Google Scholar 

  44. 44.

    Honeywell. (2014). Honeywell 2014 in flight connectivity survey. https://aerospace.honeywell.com/en/press-release-listing/2014/july/honeywell-2014-in-flight-connectivity-survey. Accessed August 5 2018

  45. 45.

    Ibrahim, M., & Arslan, H. (2015) Air-ground doppler-delay spread spectrum for dense scattering environments. In IEEE military communications conference (pp. 1661–1666).

  46. 46.

    Inmarsat. (2018). Demand for inflight Wi-Fi is driving airline loyalty amongst passengers. https://www.inmarsat.com/press-release/demand-for-inflight-wi-fi-is-driving-airline-loyalty-amongst-passengers/. Accessed August 5, 2018.

  47. 47.

    Inmarsat. (2016). The european aviation network. https://www.inmarsat.com/wp-content/uploads/2016/01/Inmarsat_European_aviation_network_April_2016_EN_LowRes.pdf. Accessed August 14, 2018.

  48. 48.

    Inmarsat. (2018). Network completed: Ean ready to take off!. https://www.inmarsat.com/news/network-completed-ean-ready-to-take-off/. Accessed August 14, 2018.

  49. 49.

    Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: From fundamentals to applications. New York: Wiley.

    Google Scholar 

  50. 50.

    Jahn, A., Holzbock, M., Muller, J., Kebel, R., Sanctis, M. D., Rogoyski, A., et al. (2003). Evolution of aeronautical communications for personal and multimedia services. IEEE Communications on Magazine, 41(7), 36–43.

    Google Scholar 

  51. 51.

    Janaswamy, R. (2002). Angle of arrival statistics for a 3-d spheroid model. IEEE Transactions on Vehicular Technology, 51(5), 1242–1247.

    Google Scholar 

  52. 52.

    Jenn, D. D. C. (2004). POFACETS. http://faculty.nps.edu/jenn/#_Matlab_Software. [Online; accessed 31-Aug.-2018].

  53. 53.

    Khan, N. M., Simsim, M. T., & Rapajic, P. B. (2008). A generalized model for the spatial characteristics of the cellular mobile channel. IEEE Transactions on Vehicular Technology, 57(1), 22–37.

    Google Scholar 

  54. 54.

    Khawaja, W., Guvenc, I., & Matolak, D. (2016). Uwb channel sounding and modeling for uav air-to-ground propagation channels. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–7).

  55. 55.

    Kim, M., & Lee, J. (2019). Impact of an interfering node on unmanned aerial vehicle communications. arXiv preprint arXiv:1903.08154.

  56. 56.

    Klein, P. P. (2012). On the ellipsoid and plane intersection equation. Applied Mathematics, 3(11), 1634–1640.

    Google Scholar 

  57. 57.

    Kung, H. T., Lin, C. K., Lin, T. H., Tarsa, S. J., & Vlah, D. (2010). Measuring diversity on a low-altitude uav in a ground-to-air wireless 802.11 mesh network. In Proceedings of the 2010 IEEE globecom workshops (pp. 1799–1804).

  58. 58.

    Le, K. N. (2009). On angle-of-arrival and time-of-arrival statistics of geometric scattering channels. IEEE Transactions on Vehicular Technology, 58(8), 4257–4264.

    Google Scholar 

  59. 59.

    Lee, Y. H., Meng, Y. S., & Heng, Y. H. (2008) Experimental characterizations of an air to land channel over sea surface in c band. In In Proceedings of the XXIXth URSI general assembly, Chicago, IL, USA, (pp. 7–16).

  60. 60.

    Lei, Q., & Rice, M. (2009). Multipath channel model for over-water aeronautical telemetry. IEEE Transactions on Aerospace and Electronic Systems, 45(2), 735–742. https://doi.org/10.1109/TAES.2009.5089553.

    Article  Google Scholar 

  61. 61.

    Li, W. D., Miao, J. X., Hu, J., Song, Z., & Zhou, H. X. (2011). An improved cubic polynomial method for interpolating/extrapolating mom matrices over a frequency band. Progress In Electromagnetics Research, 117, 267–281.

    Google Scholar 

  62. 62.

    Li, W. D., Zhou, H. X., Hu, J., Song, Z., & Hong, W. (2011). Accuracy improvement of cubic polynomial inter/extrapolation of mom matrices by optimizing frequency samples. IEEE Antennas and Wireless Propagation Letters, 10, 888–891.

    Google Scholar 

  63. 63.

    Liu, Z. W., Chen, R. S., & Chen, J. Q. (2008). Adaptive sampling cubic-spline interpolation method for efficient calculation of monostatic rcs. Microwave and Optical Technology Letters, 50(3), 751–755.

    Google Scholar 

  64. 64.

    Liu, Z. W., Ding, D. Z., Fan, Z. F., & Chen, R. S. (2008). Adaptive sampling bicubic spline interpolation method for fast calculation of monostatic rcs. Microwave and Optical Technology Letters, 50(7), 1851–1857. https://doi.org/10.1002/mop.23540.

    Article  Google Scholar 

  65. 65.

    Mach, E. (2013). The principles of physical optics: An historical and philosophical treatment. Chelmsford: Courier Corporation.

    Google Scholar 

  66. 66.

    Mammasis, K., & Santi, P. (2012). A two-dimensional geometry-based stochastic model. IEEE Transactions on Wireless Communications, 11(1), 38–43.

    Google Scholar 

  67. 67.

    MarketsandMarkets. (2018). In-flight Entertainment & Connectivity (IFEC) Market by End User (OEM, Aftermarket), Aircraft Type (NBA, WBA, VLA, Business Jets), Product (IFE Hardware, IFE Connectivity, IFE Content), and Region - Global Forecast to 2023. https://www.marketsandmarkets.com/Market-Reports/in-flight-entertainm_ent-communications-market-860.html. Accessed August 5, 2018.

  68. 68.

    Matolak, D. W. (2012). Air-ground channels & models: Comprehensive review and considerations for unmanned aircraft systems. In 2012 IEEE aerospace conference, (pp. 1–17) IEEE.

  69. 69.

    Matolak, D. W., Sen, I., & Xiong, W. (2008). The 5-ghz airport surface area channel-part I: Measurement and modeling results for large airports. IEEE Transactions on Vehicular Technology, 57(4), 2014–2026.

    Google Scholar 

  70. 70.

    Matolak, D. W., & Sun, R. (2013). Air-ground channel measurements amp; modeling for uas. In Proceedings of the 2013 integrated communications, navigation and surveillance conference (ICNS), (pp. 1–9).

  71. 71.

    Matolak, D.W., & Sun, R. (2014). Air-ground channel characterization for unmanned aircraft systems: the hilly suburban environment. In IEEE 80th vehicular technology conference (pp. 1–5). IEEE.

  72. 72.

    Matolak, D. W. & Sun, R. (2014). Air-ground channel characterization for unmanned aircraft systems: The over-freshwater setting. In 2014 integrated communications, navigation and surveillance conference (ICNS), (pp. K1–1–K1–9). IEEE.

  73. 73.

    Matolak, D. W., & Sun, R. (2014) Antenna and frequency diversity in the unmanned aircraft systems bands for the over-sea setting. In IEEE/AIAA 33rd digital avionics systems conference (DASC), (pp. 6A4–1–6A4–10).

  74. 74.

    Matolak, D. W., & Sun, R. (2014). Initial results for air-ground channel measurements & modeling for unmanned aircraft systems: Over-sea. In 2014 IEEE aerospace conference, (pp. 1–15).

  75. 75.

    Matolak, D. W., & Sun, R. (2015) Air-ground channel characterization for unmanned aircraft systems: The near-urban environment. In 2015 IEEE military communications conference (pp. 1656–1660).

  76. 76.

    Matolak, D. W., & Sun, R. (2016). Air-ground channels for uas: Summary of measurements and models for l- and c-bands. In 2016 integrated communications navigation and surveillance (ICNS) (pp. 8B2–1–8B2–11).

  77. 77.

    Matolak, D. W., & Sun, R. (2017). Air-ground channel characterization for unmanned aircraft systems-part I: Methods, measurements, and models for over-water settings. IEEE Transactions on Vehicular Technology, 66(1), 26–44.

    Google Scholar 

  78. 78.

    Matolak, D. W., & Sun, R. (2017). Air-ground channel characterization for unmanned aircraft systems-part III: The suburban and near-urban environments. IEEE Transactions on Vehicular Technology, 66(8), 6607–6618.

    Google Scholar 

  79. 79.

    Medina, D. & Hoffmann, F. (2011). Future Aeronautical Communications, chap. The Airborne Internet, (pp. 349–374). Germany: InTech.

  80. 80.

    Medina, D., Hoffmann, F., Rossetto, F., & Rokitansky, C. H. (2010) A crosslayer geographic routing algorithm for the airborne internet. In Proceedings of IEEE, interencational conference on communications (pp. 1–6). https://doi.org/10.1109/ICC.2010.5502351.

  81. 81.

    Meng, Y. S., & Lee, Y. H. (2010). Multipath characterization and fade mitigation of air-to-ground propagation channel over tropical sea surface at c band. In In Proceedings of the 2010 IEEE antennas and propagation society international symposium (pp. 1–4).

  82. 82.

    Meng, Y. S., & Lee, Y. H. (2011). Measurements and characterizations of air-to-ground channel over sea surface at c-band with low airborne altitudes. IEEE Transactions on Vehicular Technology, 60(4), 1943–1948. https://doi.org/10.1109/TVT.2011.2136364.

    Article  Google Scholar 

  83. 83.

    Mirza, M. Y. M., Khan, N. M., Jamal, A., & Ramer, R. (2018). Characterization of spatial reflection co-efficient for ground-to-aircraft and satellite-to-aircraft communication. Applied Computational Electromagnetics Society Journal, 33(1).

  84. 84.

    Miyazawa, H. (1989). Evaluation and measurement of airplane flutter interference. IEEE Transactions on Broadcasting, 35(4), 362–367.

    Google Scholar 

  85. 85.

    Nawaz, S. J., Khan, N. M., Patwary, M. N., & Moniri, M. (2011). Effect of directional antenna on the doppler spectrum in 3-d mobile radio propagation environment. IEEE Transactions on Vehicular Technology, 60(7), 2895–2903.

    Google Scholar 

  86. 86.

    Nawaz, S. J., Khan, N. M., Tiwana, M. I., Hassan, N., & Shah, S. I. (2015). Airborne internet access through submarine optical fiber cables. IEEE Transactions on Aerospace and Electronic Systems, 51(1), 167–177.

    Google Scholar 

  87. 87.

    Neul, A., Hagenauer, J., Papke, W., Dolainsky, F., & Edbauer, F. (1987). Propagation measurements for the aeronautical satellite channel. In 37th IEEE vehicular technology conference (vol. 37, pp. 90–97).

  88. 88.

    Newhall, W., Mostafa, R., Dietrich, C., Anderson, C. R., Dietze, K., Joshi, G., & Reed, J. (2002). Wideband air-to-ground radio channel measurements using an antenna array at 2 ghz for low-altitude operations. In IEEE military communications conference (pp. 1422–1427).

  89. 89.

    Newhall, W.G. & Reed, J. (2002). A geometric air-to-ground radio channel model. In IEEE military communications conference (pp. 632–636).

  90. 90.

    Ono, F., Takizawa, K., Tsuji, H., & Miura, R. (2015). S-band radio propagation characteristics in urban environment for unmanned aircraft systems. In Proceedings of the 2015 international symposium on antennas and propagation (ISAP), (pp. 1–4).

  91. 91.

    Painter, J. H., Gupta, S. C., & Wilson, L. R. (1973). Multipath modeling for aeronautical communications. IEEE Transactions on Communications, 21(5), 658–662.

    Google Scholar 

  92. 92.

    Paulraj, A., Gesbert, D., & Papadias, C. (2000) Smart antennas for mobile communications. Encyclopedia for Electrical Engineering (pp. 1–15).

  93. 93.

    Persson, B., & Norsell, M. (2014). On modeling rcs of aircraft for flight simulation. IEEE Antennas and Propagation Magazine, 56(4), 34–43.

    Google Scholar 

  94. 94.

    Petrus, P., Reed, J. H., & Rappaport, T. S. (1996). Geometrically based statistical channel model for macrocellular mobile environments. In Proceedings of the global telecommunications conference, GLOBECOM ’96., vol. 2, (pp. 1197–1201).

  95. 95.

    Rappaport, T. S. (2001). Wireless communications: Principles and practice (2nd ed.). New Jersey: Prentice Hall PTR.

    Google Scholar 

  96. 96.

    Rice, M., Davis, A., & Bettweiser, C. (2004). Wideband channel model for aeronautical telemetry. IEEE Transactions on Aerospace and Electronic Systems, 40(1), 57–69.

    Google Scholar 

  97. 97.

    Rice, M., Dye, R., & Welling, K. (2000). Narrowband channel model for aeronautical telemetry. IEEE Transactions on Aerospace and Electronic Systems, 36(4), 1371–1376.

    Google Scholar 

  98. 98.

    Romeu, J., Aguasca, A., Alonso, J., Blanch, S., & Martins, R. R. (2010). Small uav radiocommunication channel characterization. In Proceedings of the fourth European conference on antennas and propagation (pp. 1–5).

  99. 99.

    Routehappy (2018). Routehappy 2018 Wi-Fi report evaluates global in-flight Wi-Fi. https://www.routehappy.com/insights/wi-fi/2018. Accessed August 5, 2018.

  100. 100.

    Rula, J. P., Newman, J., Bustamante, F. E., Kakhki, A. M., & Choffnes, D. (2018) Mile high wifi: A first look at in-flight internet connectivity. In Proceedings of the 2018 world wide web conference (pp. 1449–1458).

  101. 101.

    Sakhaee, E., & Jamalipour, A. (2006). The global in-flight internet. IEEE Journal on Selected Areas in Communications, 24(9), 1748–1757. https://doi.org/10.1109/JSAC.2006.875122.

    Article  Google Scholar 

  102. 102.

    Schneckenburger, N., Jost, T., Shutin, D., Walter, M., Thiasiriphet, T., Schnell, M., et al. (2016). Measurement of the L-band air-to-ground channel for positioning applications. IEEE Transactions on Aerospace and Electronic Systems, 52(5), 2281–2297.

    Google Scholar 

  103. 103.

    Sen, I., & Matolak, D. W. (2008). The 5-ghz airport surface area channel-part II: Measurement and modeling results for small airports. IEEE Transactions on Vehicular Technology, 57(4), 2027–2035. https://doi.org/10.1109/TVT.2007.912335.

    Article  Google Scholar 

  104. 104.

    Sevgi, L. (2001). Target reflectivity and rcs interactions in integrated maritime surveillance systems based on surface-wave high-frequency radars. IEEE Antennas and Propagation Magazine, 43(1), 36–51.

    Google Scholar 

  105. 105.

    Sevgi, L. (2003). Complex electromagnetic problems and numerical simulation approaches. New York: Wiley.

    Google Scholar 

  106. 106.

    Simunek, M., Fontán, F. P., & Pechac, P. (2013). The uav low elevation propagation channel in urban areas: Statistical analysis and time-series generator. IEEE Transactions on Antennas and Propagation, 61(7), 3850–3858.

    Google Scholar 

  107. 107.

    Sun, R., & Matolak, D. W. (2014). Over-harbor channel modeling with directional ground station antennas for the air-ground channel. In 2014 IEEE military communications conference (pp. 382–387). https://doi.org/10.1109/MILCOM.2014.69.

  108. 108.

    Sun, R., & Matolak, D. W. (2017). Air-ground channel characterization for unmanned aircraft systems-part II: Hilly and mountainous settings. IEEE Transactions on Vehicular Technology, 66(3), 1913–1925.

    Google Scholar 

  109. 109.

    Sutton, R. W., Schroeder, E. H., Thompson, A. D., & Wilson, S. G. (1973). Satellite-aircraft multipath and ranging experiment results at L band. IEEE Transactions on Communications, 21(5), 639–647.

    Google Scholar 

  110. 110.

    Taflove, A. (1980). Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Transactions on Electromagnetic Compatibility, 3, 191–202.

    Google Scholar 

  111. 111.

    Takizawa, K., Kagawa, T., Lin, S., Ono, F., Tsuji, H., & Miura, R. (2014). C-band aircraft-to-ground (a2g) radio channel measurement for unmanned aircraft systems. In 2014 international symposium on wireless personal multimedia communications (WPMC) (pp. 754–758).

  112. 112.

    Thomas, T. A., Mondal, B., Baum, K. L., & Vook, F. W. (2007). User selection for sdma beamforming with imperfect csi in mimo-ofdm systems. In IEEE international conference on communications (pp. 5419–5422).

  113. 113.

    Tu, H. D., Jingyu, P., Shimamoto, S., & Kitaori, J. (2009). Oceanic air traffic control based on space-time division multiple access. In Proceedings of IEEE, digital avionics systems conference, (pp. 7–D). https://doi.org/10.1109/DASC.2009.5347419.

  114. 114.

    Tu, H. D., & Shimamoto, S. (2009) A proposal of wide-band air-to-ground communication at airports employing 5-ghz band. In Proceedings of the 2009 IEEE wireless communications and networking conference (pp. 1–6).

  115. 115.

    Uluisik, C., Cakir, G., Cakir, M., & Sevgi, L. (2008). Radar cross section (rcs) modeling and simulation, part 1: A tutorial review of definitions, strategies, and canonical examples. IEEE Antennas and Propagation Magazine, 50(1), 115–126.

    Google Scholar 

  116. 116.

    U.S. Dept. Transportation. (2014). Unmanned aircraft system (UAS) service demand 2015-2035: Literature review and projections of future usage. Tech. rep. v.1.0, dot-vntsc-dod-13-01.

  117. 117.

    Vahidi, V., & Saberinia, E. (2016). Orthogonal frequency division multiplexing and channel models for payload communications of unmanned aerial systems. In Proceedings of the 2016 international conference on unmanned aircraft systems (ICUAS) (pp. 1156–1161).

  118. 118.

    Walter, M., & Schnell, M. (2011) The doppler-delay characteristic of the aeronautical scatter channel. In 2011 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  119. 119.

    Wang, J. D., Chao, T. H. S., & Saltzberg, B. R. (1990). Training signal and receiver design for multipath channel characterization for tv broadcasting. IEEE Transactions on Consumer Electronics, 36(4), 794–806.

    Google Scholar 

  120. 120.

    Wentz, M., & Stojanovic, M. (2015). A mimo radio channel model for low-altitude air-to-ground communication systems. In IEEE 82nd vehicular technology conference (pp. 1–6).

  121. 121.

    Willink, T. J., Squires, C. C., Colman, G. W. K., & Muccio, M. T. (2016). Measurement and characterization of low-altitude air-to-ground mimo channels. IEEE Transactions on Vehicular Technology, 65(4), 2637–2648.

    Google Scholar 

  122. 122.

    Wilson, J. D. (1972). Probability of detecting aircraft targets. IEEE Transactions on Aerospace and Electronic Systems, AES–8(6), 757–761.

    Google Scholar 

  123. 123.

    Wonggeeratigun, A., Sangonchat, P., Noppanakeepong, S., Leelaruji, N., & Moriya, Y. (2003). The observation and simulation of the airplane flutter on low band television broadcasting signal. In Proceedings of student conference on research and development, 2003 (pp. 118–122).

  124. 124.

    Wongkeeratikul, A., Supnithi, P., Noppanakeepong, S., Leelaruji, N., & Hemmakorn, N. (2008). Modeling and measurement of airplane flutter phenomena on tv broadcasting signal. IEEE Transactions on Broadcasting, 54(2), 173–181.

    Google Scholar 

  125. 125.

    Wu, Z., Kumar, H., & Davari, A. (2005). Performance evaluation of ofdm transmission in uav wireless communication. Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005, 6–10.

    Google Scholar 

  126. 126.

    Xu, Q., Huang, Y., Zhu, X., Xing, L., Duxbury, P., & Noonan, J. (2016). Building a better anechoic chamber: A geometric optics-based systematic solution, simulated and verified [measurements corner]. IEEE Antennas and Propagation Magazine, 58(2), 94–119.

    Google Scholar 

  127. 127.

    Yan, C., Fu, L., Zhang, J., & Wang, J. (2019). A comprehensive survey on uav communication channel modeling. IEEE Access, 7, 107769–107792. https://doi.org/10.1109/ACCESS.2019.2933173.

    Article  Google Scholar 

  128. 128.

    Yang, J., Liu, P. & Mao, H. (2011) Model and simulation of narrowband ground-to-air fading channel based on markov process. In Proceedings of the 2011 international conference on network computing and information security (vol. 1).

  129. 129.

    Yanmaz, E., Kuschnig, R., & Bettstetter, C. (2011). Channel measurements over 802.11a-based uav-to-ground links. In Proceedings of the 2011 IEEE GLOBECOM workshops (GC Wkshps) (pp. 1280–1284).

  130. 130.

    Yanmaz, E., Kuschnig, R., & Bettstetter, C. (2013) Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility. In Proceedings of the 2013 IEEE INFOCOM (pp. 120–124).

  131. 131.

    Zaman, M. A., Mamun, S. A., Gaffar, M., Alam, M. M., & Momtaz, M. I. (2010). Modeling vhf air-to-ground multipath propagation channel and analyzing channel characteristics and ber performance. In IEEE Region 8 international conference on computational technologies in electrical and electronics engineering (SIBIRCON) (pp. 335–338).

  132. 132.

    Zhang, C., & Hui, Y. (2011). Broadband air-to-ground communications with adaptive mimo datalinks. In 2011 IEEE/AIAA 30th digital avionics systems conference (pp. 4D4–1–4D4–10).

  133. 133.

    Zhang, J., Kountouris, M., Andrews, J. G., & Heath, R. W. (2011). Multi-mode transmission for the mimo broadcast channel with imperfect channel state information. IEEE Transactions on Communications, 59(3), 803–814.

    Google Scholar 

  134. 134.

    Zheng, B., Ren, Q. H., Liu, Y. J., & Chu, Z. Y. (2007). Simulation of two v/uhf air-to-ground communication channel models. In International conference on wireless communications, networking and mobile computing (pp. 1083–1086).

  135. 135.

    Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., & Taylor, R. L. (1977). The finite element method (Vol. 3). London: McGraw-Hill.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad-Yasir Masood Mirza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirza, M.M., Khan, N.M. G2A Communication Channel Modeling and Characterization Using Confocal Prolates. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07597-4

Download citation

Keywords

  • Airborne internet
  • Ground-to-air
  • Air-to-ground
  • Wireless communications
  • Multipath channel
  • Confocal prolate
  • Prolate spheroid
  • CDMA
  • SDMA
  • UAV mesh network