Watermark Visibility Adjustable RVW Scheme for JPEG Images

Abstract

In digital images, visible watermarks are embedded to convey the ownership information directly to the world so that copyright violations can be prevented. The removable visible watermarking (RVW) techniques allow the authorized user to remove the watermark from the watermarked image and restore the host image with permissible loss. Usually the visibility of the watermark can’t be increased or decreased based on the application requirement. In most of the commercial communication, JPEG images are used over the internet because of its reduced size. In this paper a RVW scheme is proposed for JPEG images which allows the user to embed watermark in the host image with variable visibility levels. In this scheme, the watermark embedding is performed by modifying the frequency coefficients of host image during forward Discrete Cosine Transform phase of JPEG compression. Inverse operation is performed to remove the watermark and to recover the host image. Watermark key is used to enhance the security of watermarking scheme. Quality metrics of visible watermarking technique are confirmed through experiments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Sarkar, A., Madhow, U., & Manjunath, B. S. (2010). Matrix embedding with pseudorandom coefficient selection and error correction for robust and secure steganography. IEEE Transaction on Information Forensics and Security,5(2), 225–239.

    Article  Google Scholar 

  2. 2.

    Hong, W., & Chen, T. S. (2012). A novel data embedding method using adaptive pixel pair matching. IEEE Transactions on Information Forensic and Security,7(1), 176–184.

    Article  Google Scholar 

  3. 3.

    Tsai, M. J., Liu, J., Yin, J. S., & Yuadi, I. (2014). A visible wavelet watermarking technique based on exploiting the contrast sensitivity function and noise reduction of human vision system. Multimedia Tools and Applications,72, 1311–1340.

    Article  Google Scholar 

  4. 4.

    Guo, L., Ni, J., & Shi, Y. Q. (2014). Uniform embedding for efficient JPEG steganography. IEEE Transactions on Information Forensics and Security,9(5), 814–825.

    Article  Google Scholar 

  5. 5.

    Zong, T., Xiang, Y., Natgunanathan, I., Guo, S., Zhou, W., & Beliakov, G. (2015). Robust histogram shape-based method for image watermarking. IEEE Transaction on Circuits and Systems for Video Technology,25(5), 717–729.

    Article  Google Scholar 

  6. 6.

    Agarwal, H., Sen, D., Raman, B., & Kankanhalli, M. (2016). Visible watermarking based on importance and just noticeable distortion of image regions. Multimedia Tools and Applications,75, 7605–7629.

    Article  Google Scholar 

  7. 7.

    Taha, T. B., Ngadiran, R., & Ehkan, P. (2018). Adaptive image watermarking algorithm based on an efficient perceptual mapping model. IEEE Access,6, 66254–66267.

    Article  Google Scholar 

  8. 8.

    Noor, R., Khan, A., & Sarfaraz, A. (2019). High performance and energy efficient image watermarking for video using a mobile device. Wireless Personal Communications,104, 1535–1551.

    Article  Google Scholar 

  9. 9.

    Hu, Y., Lee, H. K., & Li, J. (2009). DE- based reversible data hiding with improved overflow location map. IEEE Transaction on Circuits and Systems for Video Technology,19(2), 250–260.

    Article  Google Scholar 

  10. 10.

    Lee, C. F., Chen, H. L., & Tso, H. K. (2010). Embedding capacity raising in reversible data hiding based on prediction of difference expansion. Journal of Systems and Software,83, 1864–1872.

    Article  Google Scholar 

  11. 11.

    Leung, H. Y., Cheng, L. M., Liu, F., & Fu, Q. K. (2013). Adaptive reversible data hiding based on block median preservation and modification of prediction errors. Journal of Systems and Software,86, 2204–2219.

    Article  Google Scholar 

  12. 12.

    Qiu, Y., Qian, Z., & Yu, L. (2016). Adaptive reversible data hiding by extending the generalized integer transformation. IEEE Signal Processing Letters,23(1), 130–134.

    Article  Google Scholar 

  13. 13.

    Huang, F., Qu, X., Kim, H. J., & Huang, J. (2016). Reversible data hiding in JPEG images. IEEE Transaction on Circuits and Systems for Video Technology,26(9), 1610–1621.

    Article  Google Scholar 

  14. 14.

    Brabin, D. R. D., Perinbam, J. R. P., & Meganathan, D. (2017). A block based reversible data hiding scheme for digital images using optimal value computation. Wireless Personal Communications,94(4), 2583–2596.

    Article  Google Scholar 

  15. 15.

    Xie, X., Lin, C., & Chang, C. (2019). A reversible data hiding scheme for JPEG images by doubling small quantized AC coefficients. Multimedia Tools and Applications,78, 11443–11462.

    Article  Google Scholar 

  16. 16.

    Yang, Y., Sun, X., Yang, H., Li, C. T., & Xiao, R. (2009). A contrast-sensitive reversible visible image watermarking technique. IEEE Transactions on Circuits and Systems for Video Technology,19(5), 656–667.

    Article  Google Scholar 

  17. 17.

    Tsai, H. M., & Chang, L. W. (2010). Secure reversible visible image watermarking with authentication. Signal Processing: Image Communication,25, 10–17.

    Google Scholar 

  18. 18.

    Farrugia, R. A. (2010). A reversible visible watermarking scheme for compressed images. In Proceedings of fifteenth IEEE Mediterranean electrotechnical conference (pp. 212–217).

  19. 19.

    Mehra, N., & Shandilya, M. (2013). Imprecise reversible visible watermarking. CSIT,1(4), 355–365.

    Article  Google Scholar 

  20. 20.

    Hsu, F. H., Wu, M. H., Yang, C. H., & Wang, S. J. (2014). Visible watermarking with reversibility of multimedia images for ownership declarations. Journal of Supercomputing,70(1), 247–268.

    Article  Google Scholar 

  21. 21.

    Zhang, X., Wang, Z., Yu, J,. & Qian Z. (2015). Reversible visible watermark embedded in encrypted domain. In Proceedings of IEEE international conference on signal and information processing (pp. 826–830).

  22. 22.

    Yang, H., & Yin, J. (2015). A secure removable visible watermarking for BTC compressed images. Multimedia Tools and Applications,74, 1725–1739.

    Article  Google Scholar 

  23. 23.

    Mohammad, N., Sun, X., Yang, H., Yin, J., Yang, G., & Jiang, M. (2017). Lossless visible watermarking based on adaptive circular shift operation for BTC-compressed images. Multimedia Tools and Applications,76(11), 13301–13313.

    Article  Google Scholar 

  24. 24.

    Lin, Y., Yang, C., & Tsai, J. (2018). More secure lossless visible watermarking by DCT. Multimedia Tools and Applications,77, 8579–8601.

    Article  Google Scholar 

  25. 25.

    Shiu, P. F., Lin, C. C., Jan, J. K., & Chang, Y. F. (2018). A DCT-based robust watermarking scheme surviving JPEG compression with voting strategy. Journal of Network Intelligence,3(4), 259–277.

    Google Scholar 

  26. 26.

    Yao, Y., Zhang, W., Wang, H., Zhou, H., & Yu, N. (2019). Content-adaptive reversible visible watermarking in encrypted images. Signal Processing,164, 386–401.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. R. Denslin Brabin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brabin, D.R.D., Perinbam, J.R.P. & Meganathan, D. Watermark Visibility Adjustable RVW Scheme for JPEG Images. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07567-w

Download citation

Keywords

  • Data hiding
  • DCT
  • JPEG
  • Removable visible watermarking