Design of a Tri-band Patch Antenna with Back Reflector for Off-Body Communication

Abstract

In this paper, a patch antenna for wireless body area network (WBAN) applications is proposed. Antenna is designed for on-body to Off-body communication that aims to interconnect WBAN with various wireless technologies. It covers three bands for Personal Communication Services (1.2–1.6 GHz), WiMax (3.1–3.4 GHz) and WLAN (5.2–5.8 GHz) in free space. The proposed design is composed of a monopole radiator and defected ground plane. A perfect conducting metal plate is added below the antenna at a gap s to enhance the antenna performance on bio-tissue. Metallic plate acts as a shield for antenna and avoids frequency detuning due to body. Result shows wide bandwidth of 70/330/600 MHz at 1.4/3.2/5.5 GHz frequencies for on body. High directivity of 5.0/7.0/7.50 dBi is observed at 1.4/3.2/5.5 GHz frequencies. In order to consider the health safety, specific absorption rate (SAR) value has been evaluated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications & Tutorials,16(3), 1658–1686.

    Article  Google Scholar 

  2. 2.

    Tak, J., Seoungkyu, L., & Jaehoon, C. (2014). All-textile higher order mode circular patch antenna for on-body to on-body communications. IET Microwaves, Antennas and Propagation,9, 576–584.

    Article  Google Scholar 

  3. 3.

    Chen, M., Gonzalez, S., Vasikalos, A., Cao, H., & Leung, V. C. M. (2011). Body area networks: A survey. Mobile Networks and Applications,16, 171–193.

    Article  Google Scholar 

  4. 4.

    Gupta, A., Kansal, A., & Chawla, P. (2018). A review of antennas for wireless body area network devices. IEEE Conference on Computing for Sustainable Global Development, India.,42835, 2211–2219.

    Google Scholar 

  5. 5.

    Kiourti, A., & Konstantina, S. N. (2012). A review of implantable patch antennas for biomedical telemetry: Challenges and solutions. IEEE Antennas and Propagation Magazine,54(3), 210–227.

    Article  Google Scholar 

  6. 6.

    Shakib, M. N., Moghavvemi, M., & Mahadi, W. (2017). Design of a tri-band off-body antenna for WBAN communication. IEEE Antennas Wireless Propagation Letter,16, 210–213.

    Article  Google Scholar 

  7. 7.

    Folayan, O., & Langely, R. (2009). Dual frequency band antenna combined with a high impedance band gap surface. IET Microwaves, Antennas and Propagation,3(7), 1118–1126.

    Article  Google Scholar 

  8. 8.

    Gao, G., Hu, B., Wang, S., & Yang, C. (2018). Wearable circular ring slot antenna with EBG structure for wireless body area network. IEEE Antennas and Wireless Propagation Letters,17(3), 434–437.

    Article  Google Scholar 

  9. 9.

    Mersani, A., Lotfi, O., & Ribero, J. (2018). Design of a textile antenna with artificial magnetic conductor for wearable applications. Microwave Optical and Technology Letter,60, 1343–1349.

    Article  Google Scholar 

  10. 10.

    Zhang, J., Yan, S., & Vandenbosch, G. A. E. (2017). A miniature feeding network for aperture-coupled wearable antennas. IEEE Transactions on Antennas and Propagation,65(5), 2650–2654.

    Article  Google Scholar 

  11. 11.

    Poffelie, L. Y., Soh, P. J., Yan, S., & Vandenbosch, G. A. E. (2016). A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications. IEEE Transactions on Antennas and Propagation,64(2), 757–760.

    Article  Google Scholar 

  12. 12.

    Agneessens, S. (2018). Coupled eighth-mode substrate integrated waveguide antenna: Small and wideband with high body antenna isolation. IEEE Access,6, 1595–1602.

    Article  Google Scholar 

  13. 13.

    Singh, V. K., Dhupkaria, S., & Bangari, N. (2017). Wearable ultra wide dual band flexible textile antenna for WiMax/WLAN application. Wireless Personal Communication,95(2), 1075–1086.

    Article  Google Scholar 

  14. 14.

    Roy, B. V., Simorangkir, B., Yang, Y., Matekovits, L., & Esselle, K. P. (2017). Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas and Wireless Propagation Letters,16, 677–680.

    Article  Google Scholar 

  15. 15.

    Grilo, M., Seko, M. H., & Correra, F. S. (2016). Wearable textile patch antenna fed by proximity coupling with increased bandwidth. Microwave Optical and Technology Letter,58(8), 1906–1911.

    Article  Google Scholar 

  16. 16.

    Al-Sehemi, A., Al-Ghamdi, A., Dishovsky, N., Atanasov, N., & Atanasova, G. (2017). On-body investigation of a compact planar antenna on multilayer polymer composite for body-centric wireless communication. International Journal of Electronics and Communication (AEU),82, 20–29.

    Article  Google Scholar 

  17. 17.

    Al-Sehemi, A., Al-Ghamdi, A., Dishovsky, N., Atanasov, N., & Atanasova, G. (2018). Design and performance analysis of dual-band wearable compact low profile antenna for body-centric wireless communication. International Journal of and Wireless Technologies,10(10), 1175–1185.

    Google Scholar 

  18. 18.

    Chun-Ping, D., Xiong-Ying, L., Zhen-Kun, Z., & Tentzeris, M. M. (2012). A miniascape-like triple-band monopole antenna for WBAN applications. IEEE Antennas Wireless Propagation Letter,11, 1330–1333.

    Article  Google Scholar 

  19. 19.

    Lee, H., Tak, J., & Choi, J. (2017). Wearable antenna integrated into military berets for indoor/outdoor positioning system. IEEE Antennas Wireless Propagation Letters,16, 1919–1922.

    Article  Google Scholar 

  20. 20.

    Baek, J. G., & Hwang, K. C. (2013). Triple band unidirectional circularly polarized hexagonal slot antenna with multiple L-shaped slits. IEEE Transactions on Antennas and Propagation,61, 4831–4835.

    Article  Google Scholar 

  21. 21.

    Karthik, V., & Rao, T. R. (2017). Investigations on SAR and thermal effects of a body wearable microstrip antenna. Wireless Personal Communications,96(3), 3385–3401.

    Article  Google Scholar 

  22. 22.

    Xia, W., Saito, K., Takahashi, M., & Ito, K. (2009). Performance of an implanted cavity slot antenna embedded in the human arm. IEEE Transactions of Antennas and Propagation.,57(4), 894–899.

    Article  Google Scholar 

  23. 23.

    IEEE Std. C95.1. (2005). IEEE standard for safety levels with respect to human exposure to the radio frequency electromagnetic fields 3 kHz to 300 GHz, (pp. 1–83), 16 April 1999. https://doi.org/10.1109/IEEESTD.1999.89423.

  24. 24.

    Espinosa, E. I., & Linares y, M. R. (2017). Analysis of SAR distribution in a heterogeneous and homogeneous head model at 2.4 GHz using the FDTD method. Microwave and Optical Technology Letter,60, 1319–1323.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kumar Vaibhav Srivastava, Assistant Professor, I.I.T. Kanpur, India for permitting us to test antenna at Microwave Lab.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anupma Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kumar, V. Design of a Tri-band Patch Antenna with Back Reflector for Off-Body Communication. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07566-x

Download citation

Keywords

  • Off-body communication
  • Defected ground plane
  • Metallic plate
  • Specific absorption rate