Design, Implementation and Evaluation of IR-Based Tagging System for RTLS


Real time location system (RTLS) technologies are being widely used to automatically identify and track the location of objects or people. Such technologies such as UWB tags, passive/active RFID tags, IR tags and WiFi tags are helpful in improving the accuracy and reducing the inspection time to automate the inventory control process. Since most of RTLS technologies make use of already crowded radio or microwave spectrum it is imperative to explore the use of infrared tags for such applications. IR tags offer many advantages like using simple technology, reducing false-positives due to their inherent room confinement features and electromagnetic interference free wide spectrum. In this paper a novel, effective and low cost real time location system utilizing IR tags for the application of inventory control is presented. The system is designed, tested and analysed keeping range, field angle, ambient light interference, time consumption and accuracy as performance metrics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Li, H., Chan, G., Wong, J. K. W., & Skitmore, M. (2016). Real-time locating systems applications in construction. Automation in Construction, 63, 37–47.

    Article  Google Scholar 

  2. 2.

    Boulos, M. K., & Berry, G. (2012). Real-time locating systems (RTLS) in healthcare: A condensed primer. International Journal of Health Geographics, 11(1), 25+.

    Article  Google Scholar 

  3. 3.

    Judah, G., de Witt, J., Huberts, A. D., & Aunger, R. (2017). The development and validation of a real time location system to reliably monitor everyday activities in natural contexts. PLoS ONE, 12(2), 1–16.

    Article  Google Scholar 

  4. 4.

    Prater, A., Bowen, M., Pavich, E., Hawkins, C. M., Safdar, N., Fountain, J., et al. (2017). Enhancing workflow analysis in acute stroke patients using radiofrequency identification and infrared-based real-time location systems. Journal of the American College of Radiology, 14(2), 231–234.

    Article  Google Scholar 

  5. 5.

    Jeong, I., Bychkov, D., Hiser, S., Kreif, J. D., Klein, L. M., Hoyer, E. H., et al. (2017). Using a real-time location system for assessment of patient ambulation in a hospital setting. Archives of Physical Medicine and Rehabilitation, 98(7), 1366–1373.e1.

    Article  Google Scholar 

  6. 6.

    Cheng, H., Huang, L., Xu, H., Hu, Y., & Wang, X. (2016). Design and implementation of library books search and management system using RFID technology. In 2016 International conference on intelligent networking and collaborative systems (INCoS) (pp .392–397).

  7. 7.

    Nath, S., Banerjee, P., Biswas, R. N., Mitra, S. K., & Naskar, M. K. (2016). Arduino based door unlocking system with real time control. 2016 2nd International conference on contemporary computing and informatics (IC3I) (pp. 358–362).

  8. 8.

    Shrestha, S. K., Balachandran, M., Agarwal, M., Phoha, V. V., & Varahramyan, K. M. (2009). A chipless RFID sensor system for cyber centric monitoring applications. IEEE Transactions on Microwave Theory and Techniques, 57, 1303–1309.

    Article  Google Scholar 

  9. 9.

    Yang, L., Zhang, R., Staiculescu, D., Wong, C. P., & Tentzeris, M. M. (2009). A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas and Wireless Propagation Letters, 8, 653–656.

    Article  Google Scholar 

  10. 10.

    Mandel, C., Kubina, B., Schussler, M., & Jakoby, R. (2013). Metamaterial-inspired passive chipless radio-frequency identification and wireless sensing. Annales des Télécommunications, 68, 385–399.

    Article  Google Scholar 

  11. 11.

    Wendy, N., Ternera, Y., Vélez, J. C., Candelo-Becerra, J. (2015) . RFID system on electrical substation equipment, 06 2015.

  12. 12.

    Atherinis, D., Bakowski, B., Velcek, M., & Moon, S. (2018). Developing and laboratory testing a smart system for automated falsework inspection in construction. Journal of Construction Engineering and Management, 144(3), 04017119.

    Article  Google Scholar 

  13. 13.

    Penttila, K., Keskilammi, M., Sydänheimo, L., & Kivikoski, M. (2006). Radar cross-section analysis for passive RFID systems. IEE Proceedings-Microwaves, Antennas and Propagation, 153, 103–109.

    Article  Google Scholar 

  14. 14.

    Nikitin, P. V., & Rao, K. V. S. (2006). Theory and measurement of backscattering from RFID tags. IEEE Antennas and Propagation Magazine, 48, 212–218.

    Article  Google Scholar 

  15. 15.

    Al-Zu’bi, M., Khodier, M., Al-Mistarihi, M. (2014). Modeling and design of an infrared-based identification (irid) system-tag and reader design.

  16. 16.

    Verma, P., Cheng, S., Venugopalan, A., & Ghosh, A.K. (2008). Performance of an optical identification and interrogation system.

  17. 17.

    Aitenbichler, E., & Mühlhäuser, M. (2003). An IR local positioning system for smart items and devices. In Proceedings of the 23rd international conference on distributed computing systems, ICDCSW ’03, Washington, DC (pp. 334). IEEE Computer Society.

  18. 18.

    Perez, G. B., Malinowski, M., & Paradiso, J. A. (2005). An ultra-low power, optically-interrogated smart tagging and identification system. In Fourth IEEE workshop on automatic identification advanced technologies (AutoID’05) (pp. 187–192).

  19. 19.

    Baqai, A., Umrani, F. A., & Chowdhry, B. S. (2017). A novel protocol with patient and node identification for optical wban with inherent security and interference rejection. Wireless Personal Communications, 95(4), 4211–4224.

    Article  Google Scholar 

  20. 20.

    Perez-Cabre, E., & Javidi, B. (2005). Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication. IEEE Transactions on Vehicular Technology, 54(4), 1295–1303.

    Article  Google Scholar 

  21. 21.

    Dhondge, K., Ayinala, K., Choi, B.-Y., & Song, S. (2016). Infrared optical wireless communication for smart door locks using smartphones. 2016 12th International conference on mobile ad-hoc and sensor networks (MSN) (pp. 251–257).

  22. 22.

    Javidi, B. (2003). Real-time remote identification and verification of objects using optical ID tags. Optical Engineering, 42, 42.

    Google Scholar 

  23. 23.

    Horrillo, S., Pérez-Cabré, E., Millan, M., Javidi, B. (2009). Improved design of optical ID tags for remote validation. A: SPIE Optics and Photonics. Optics and photonics for information processing III. San Diego: The International Society for Photo-Optical Instrumentation Engineers (SPIE), (7442), 74421D.1-74421D.10.

  24. 24.

    Agrawal, K. G., & Khandelwal, S. (2015). Parking navigation and payment system using IR sensors and RFID technology.

  25. 25.

    Borse, S., Gaikwad, A., Kadam, R., Bhandari, G., & Bari, M. (2015). Parking navigation system based on RFID and IR sensor. (IJCSIT) International Journal of Computer Science and Information Technologiesg, 6(2), 1468–1472.

    Google Scholar 

  26. 26.

    ATMEL (2008). High Performance, Low Power AVR® 8-Bit Microcontroller. Atmega328p Datasheet. Retreived April 20, 2020 from

  27. 27.

    Retrieved May 25, 2018, from

Download references

Author information



Corresponding author

Correspondence to Anum Talpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baqai, A., Talpur, A., Umrani, F.A. et al. Design, Implementation and Evaluation of IR-Based Tagging System for RTLS. Wireless Pers Commun 113, 1345–1358 (2020).

Download citation


  • Real time location system (RTLS)
  • Lab inventory
  • Radio frequency identification (RFID)
  • LED
  • Photo-detector
  • Infra-red tags (IR-tags)