High-Density Wavelength Multiplexing Model for THz-EMI Transmission

Abstract

We propose the use of the specific form of the integrated device known as the boxcar filters for big data transmission, where the advantage of such device is the number of roll-off (bandwidth) can be increased to meet the large demand of the future bandwidth requirements. A boxcar filter system is formed by the serial Panda-ring resonators, where the initial and end rings are used to form the whispering gallery mode beams for the light fidelity (LiFi) up-down-link conversion. There are 5 boxcar circuits within the system. Each of boxcar devices has the electro-optic connection that can be used to perform the external signal processing applications, where all electronic signals are changed to be the light signals and connected to the network via the free-space up-down link nodes. In a simulation, the selected light source is fed into the boxcar filters via the input port, in which the single roll-off bandwidth of 300 THz is obtained. The frequency guard band is given by each boxcar separation. In applications, the electromagnetic immunity interference (EMI) signals can be obtained by the electro-optic conversion circuit, which is the medical instrument specification requirement. The low EMI signals can be connected to the network and transmission using the LiFi network to the remote area. In addition, the medical information to home using the big data via the ad hoc LiFi network and the internet of thing platform arrangements are also proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Fusco, G., Bracci, A., Caligiuri, T., Colombaroni, C., & Isaenko, N. (2018). Experimental analyses and clustering of travel choice behaviours by floating car big data in a large urban area. IET Intelligent Transport Systems,12, 270–278.

    Article  Google Scholar 

  2. 2.

    Zhuang, Z., Ramachandra, H., & Xiong, C. (2015). Taming replication latency of big data events with capacity planning. Computer,48, 36–41.

    Article  Google Scholar 

  3. 3.

    Mao, M., Yue, Y., & Chang, L. (2016). Multi-time scale forecast for schedulable capacity of Electric Vehicle fleets using big data analysis. In 2016 IEEE 7th international symposium on power electronics for distributed generation systems (PEDG) (pp. 1–7).

  4. 4.

    Mao, M., Wang, Y., Yue, Y., & Chang, L. (2017). Multi-time scale forecast for schedulable capacity of EVs based on big data and machine learning. In 2017 IEEE, Energy conversion congress and exposition (ECCE) (pp. 1425–1431).

  5. 5.

    Atabaki, A. H., Moazenni, S., Pavanello, F., et al. (2018). Integrating photonics with silicon nanoelectronics for next generation of system on a chip. Nature,556, 349–354.

    Article  Google Scholar 

  6. 6.

    Bahadoran, M., & Yupapin, P. (2018). All-optical notch filters for ultra-wideband chaotic communications. European Journal of Physics Plus, 133, 487.

    Article  Google Scholar 

  7. 7.

    Wang, H., Chen, Z., Zhao, J., Di, X., & Liu, D. (2018). A vulnerability assessment method in industrial internet of things based on attack graph and maximum flow. IEEE ACCESS,6, 8599–8609.

    Article  Google Scholar 

  8. 8.

    Liu, Z., Choo, K.-K. R., & Grossschadl, J. (2018). Securing edge devices in the post-quantum internet of things using lattice-based cryptography. IEEE Communications Magazine,56, 158–162.

    Article  Google Scholar 

  9. 9.

    Zhao, L., & Dong, X. (2018). An industrial internet of things feature selection method based on potential entropy evaluation criteria. IEEE Access,6, 4608–4617.

    Article  Google Scholar 

  10. 10.

    Mumtaz, S., Bo, A., Al-Dulaimi, A., & Tsang, K.-F. (2018). 5G and beyond mobile technologies and applications for industrial IoT (IIoT). IEEE Transactions on Industrial Informatics,14(6), 2588–2591.

    Article  Google Scholar 

  11. 11.

    Cai, Y., Chen, X., Yu, J., & Zhou, J. (2018). Numerical study on the evolution of mesoscopic properties and permeability in sandstone under hydromechanical coupling conditions involving industrial internet of things. IEEE Access,6, 11804–11815.

    Article  Google Scholar 

  12. 12.

    AlKalaa, M. O., Balid, W., Refai, H. H., LaSorte, N. J., Seidman, S. J., Bassen, H. I., et al. (2017). Characterizing the 2.4 GHz spectrum in a hospital environment: Modeling and applicability to coexistence testing of medical devices. IEEE Transactions on Electromagnetic Compatibility,59, 58–66.

    Article  Google Scholar 

  13. 13.

    Tang, C.-K., Chan, K.-H., Fung, L.-C., & Leung, S.-W. (2009). Electromagnetic interference immunity testing of medical equipment to second-and third-generation mobile phones. IEEE Transactions on Electromagnetic Compatibility,51, 659–664.

    Article  Google Scholar 

  14. 14.

    Wan, F., Duval, F., Savatier, X., Louis, A., & Mazari, B. (2012). Electromagnetic interference detection method to increase the immunity of a microcontroller-based system in a complex electromagnetic environment. IET Science, Measurement and Technology,6, 254–260.

    Article  Google Scholar 

  15. 15.

    Li, H. G., Bai, H. X., Xie, S. G., & Su, D. L. (2015). Bulk-driven CMOS amplifier with high EMI immunity. IEEE Transactions on Electromagnetic Compatibility,57, 1425–1434.

    Article  Google Scholar 

  16. 16.

    Richelli, A., Colalongo, L., Quarantelli, M., & Kovács-Vajna, Z. M. (2004). Robust design of low EMI susceptibility CMOS OpAmp. IEEE Transactions on Electromagnetic Compatibility,46, 291–298.

    Article  Google Scholar 

  17. 17.

    Redouté, J.-M., & Baghini, M. S. (2018). A generic EMI-immune technique for differential amplifiers with single-ended output. IEEE Transactions on Electromagnetic Compatibility,60, 958–964.

    Article  Google Scholar 

  18. 18.

    Soysouvanh, S., Jalil, M., Amiri, I., Ali, J., Singh, G., Mitatha, S., et al. (2018). Ultra-fast electro-optic switching control using a soliton pulse within a modified add-drop multiplexer. Microsystem Technologies,24(9), 3777–3782.

    Article  Google Scholar 

  19. 19.

    Haas, H., Yin, L., Wang, Y., & Chen, C. (2016). What is lifi? Journal of Lightwave Technology,34, 1533–1544.

    Article  Google Scholar 

  20. 20.

    Sarkar, A., Agarwal, S., & Nath, A. (2015). Li–Fi technology: Data transmission through visible light. International Journal of Advance Research in Computer Science and Management Studies, 3(6), 1–10.

    Google Scholar 

  21. 21.

    Yadav, M. S., Mishra, M. P., Velapure, M. M., & Togrikar, P. (2016). LI–FI technology for data transmission through LED. Imperial Journal ofInterdisciplinary Research, 2(6), 21–24.

    Google Scholar 

  22. 22.

    Sharma, S., & Bansal, N. (2016). Li-Fi (Light fidelity)-the future technology in wireless communication. International Journal of Advanced Research in Computer Science, 7(6), 258–262.

    Google Scholar 

  23. 23.

    Chaiwong, K., Bahadoran, M., Amiri, I. S., Youplao, P., Pornsuwancharoen, N., & Yupapin, P. (2018). Electro-optic conversion circuit incorporating a fiber optic loop. Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.31575.

    Article  Google Scholar 

  24. 24.

    Punthawanunt, S., Aziz, M. S., Phatharacorn, P., Chiangga, S., Ali, J., & Yupapin, P. (2018). LiFi cross-connection node model using whispering gallery mode of light in a microring Resonator. Microsystem Technologies,24(12), 4833–4838.

    Article  Google Scholar 

  25. 25.

    Sarapat, N., Pornsuwancharoen, N., Youplao, P., Amiri, I. S., Jalil, M. A., Ali, J., et al. (2018). LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsystem Technologies,5, 945–950.

    Google Scholar 

  26. 26.

    Smektala, F., Quemard, C., Leneindre, L., Lucas, J., Barthélémy, A., & De Angelis, C. (1998). Chalcogenide glasses with large non-linear refractive indices. Journal of Non-Crystalline Solids,239, 139–142.

    Article  Google Scholar 

  27. 27.

    Zakery, A., & Elliott, S. R. (2007). Optical nonlinearities in chalcogenide glasses and their applications (Vol. 135). Berlin: Springer.

    Google Scholar 

  28. 28.

    Pornsuwancharoen, N., Youplao, P., Amiri, I., Ali, J., & Yupapin, P. (2017). Electron driven mobility model by light on the stacked metal–dielectric interfaces. Microwave and Optical Technology Letters,59, 1704–1709.

    Article  Google Scholar 

  29. 29.

    Pornsuwancharoen, N., Amiri, I. S., Suhailin, F., Aziz, M., Ali, J., Singh, G., et al. (2017). Micro-current source generated by a WGM of light within a stacked silicon–graphene–Au waveguide. IEEE Photonics Technology Letters,29, 1768–1771.

    Article  Google Scholar 

  30. 30.

    Mitkova, M., & Boncheva-Mladenova, Z. (1987). Selective solubility of some silver-chalcogenide glasses. Journal of Non-Crystalline Solids,90, 589–592.

    Article  Google Scholar 

  31. 31.

    Roscoe, A. J. & Blair, S. M. (2016). Choice and properties of adaptive and tunable digital boxcar (moving average) filters for power systems and other signal processing applications. In 2016 IEEE international workshop on, applied measurements for power systems (AMPS) (pp. 1–6).

  32. 32.

    Gall, D. (2016). Electron mean free path in elemental metals. Journal of Applied Physics,119, 085101.

    Article  Google Scholar 

  33. 33.

    Baccarani, G., & Ostoja, P. (1975). Electron mobility empirically related to the phosphorus concentration in silicon. Solid-State Electronics,18, 579–580.

    Article  Google Scholar 

  34. 34.

    Chaiwong, K., Tamee, K., Punthawanunt, S., Suhailin, F., Aziz, M., Ali, J., et al. (2018). Naked-eye 3D imaging model using the embedded micro-conjugate mirrors within the medical micro-needle device. Microsystem Technologies,24(6), 2695–2699.

    Article  Google Scholar 

  35. 35.

    Bahadoran, M., Ali, J., & Yupapin, P. P. (2013). Ultrafast all-optical switching using signal flow graph for PANDA resonator. Applied Optics,52, 2866–2873.

    Article  Google Scholar 

  36. 36.

    Karim, M., Rahman, B., & Agrawal, G. P. (2015). Mid-infrared supercontinuum generation using dispersion-engineered Ge 11.5 As 24 Se 64.5 chalcogenide channel waveguide. Optics Express,23, 6903–6914.

    Article  Google Scholar 

  37. 37.

    Asobe, M., Suzuki, K. I., Kanamori, T., & Kubodera, K. I. (1992). Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation. Applied Physics Letters,60, 1153–1154.

    Article  Google Scholar 

  38. 38.

    Sud, S., Want, R., Pering, T., Rosario, B., & Lyons, K. (2008). Enabling rapid wireless system composition through layer-2 discovery. IEEE Network,22(4), 14–20.

    Article  Google Scholar 

  39. 39.

    Chen, H.-C. (2017). TCABRP: A trust-based cooperation authentication bit-map routing protocol against insider security threats in wireless ad hoc networks. IEEE Systems Journal,11, 449–459.

    Article  Google Scholar 

  40. 40.

    Chaiyasoonthorn, S., Limpaibool, P., Mitatha, S., & Yupapin, P. P. (2010). High capacity mobile ad hoc network using THz frequency enhancement. International Journal of Communications, Network and System Sciences,3, 954.

    Article  Google Scholar 

  41. 41.

    Derkachova, A., & Kolwas, K. (2007). Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. The European Physical Journal Special Topics,144, 93–99.

    Article  Google Scholar 

  42. 42.

    Tunsiri, S., et al. (2019). Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics,14, 1669–1677.

    Article  Google Scholar 

  43. 43.

    Ali, J., Youplao, P., Pornsuwancharoen, N., Jalil, M. A., Aziz, M. S., Amiri, I. S., et al. (2018). On-chip electro-optic multiplexing circuit using serial microring boxcar filters. Results in Physics,10, 18–21.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research facilities from Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand and Ton Duc Thang University, Vietnam.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Yupapin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bunruangses, M., Chaiwong, K., Amiri, I.S. et al. High-Density Wavelength Multiplexing Model for THz-EMI Transmission. Wireless Pers Commun 113, 1225–1239 (2020). https://doi.org/10.1007/s11277-020-07276-4

Download citation

Keywords

  • Boxcar filters
  • EMI telemetry
  • EMI LiFi
  • EMI IoT
  • Plasmonic electronics