Fishing Vessels Behavior Identification for Combating IUU Fishing: Enable Traceability at Sea


Overfishing is a critical catastrophe to the ecosystem and the global food chain. The leading causes are Illegal Unreported and Unregulated Fishing (IUU Fishing) linked to illegal labor. EU and the US have set up the fisheries policy that emphasis on traceability. The traceability principle is to monitor the entire seafood supply chain (Sea to Table). FAO’s technology gap analysis reveals that there is a lack of reliable and affordable automated systems or a lack of links to traceability. The challenge of traceability is tracing back to the catch source with existing data and technology. This study aims at the novel concept of a combination of global and local features of trajectory data for fishing vessel behavior identification and enabling seafood transparency. We present a new technique on a local feature of time series and transform the trajectory pattern to global features for Deep Learning. We apply this technique to AIS and VMS data of Thai fishing vessels (Surrounding Nets, Trawl, Longliner, and Reefer). Fishing vessel behaviors were classified as Fishing, Non-fishing, and Transshipment. Our proposed method gives a robust average accuracy result (97.50%). This concept could solve the IUU Fishing and enable traceability at sea, including monitoring, maritime, and marine resources conservation systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Dunn, D. C., Jablonicky, C., Crespo, G. O., McCauley, D. J., Kroodsma, D. A., Boerder, K., et al. (2018). Empowering high seas governance with satellite vessel tracking data. Fish and Fisheries, 19(4), 729–739.

    Google Scholar 

  2. 2.

    Agnew, D. J., Pearce, J., Pramod, G., Peatman, T., Watson, R., Beddington, J. R., et al. (2009). Estimating the worldwide extent of illegal fishing. PLoS ONE, 4(2), e4570.

    Google Scholar 

  3. 3.

    How many fisheries are overfished? Sustainable fisheries UW.

  4. 4.

    Davies, R., Cripps, S., Nickson, A., & Porter, G. (2009). Defining and estimating global marine fisheries bycatch. Marine Policy, 33(4), 661–672.

    Google Scholar 

  5. 5.

    Introini, C., Mme, A., & Cruz Introini, S. (2018). Traceability in the food supply chain: Review of the literature from a technological perspective. Dirección y Organización, 64, 50–55.

    Google Scholar 

  6. 6.

    Fishsec. (2018). EU fisheries control system factsheet traceability requirements for seafood products importance. NGO. Technical report 2018.

  7. 7.

    Melania, B., & Petter, O. (2016). Seafood traceability systems: Gap analysis of inconsistencies in standards and norms. FAO Fisheries and Aquaculture Circular, C1123, 1.

    Google Scholar 

  8. 8.

    Hosch, G., & Blaha, F. (2017). Seafood traceability for fisheries compliance: Country-level support for catch documentation schemes. Food and Agriculture Organization.

  9. 9.

    Nicolae, C. G., Isfan, N., Bahaciu, G. V., Marin, M. P., & Moga, L. M. (2016). Case study in traceability and consumer’s choices on fish and fishery products. Agrolife Scientific Journal, 5(2), 103–107.

    Google Scholar 

  10. 10.

    Nilsson, J. A., Fulton, E. A., Johnson, C. R., Haward, M., Nilsson, J. A., Fulton, E. A., et al. (2019). How to sustain fisheries: Expert knowledge from 34 nations. Water, 11(2), 213.

    Google Scholar 

  11. 11.

    Nations, U. (2005). Destructive fishing practices, pp. 78–81.

  12. 12.

    Overfishing & Destructive Fishing—Greenpeace USA.

  13. 13.

    Pramod, G., Nakamura, K., Pitcher, T. J., & Delagran, L. (2014). Estimates of illegal and unreported fish in seafood imports to the USA. Marine Policy, 48, 102–113.

    Google Scholar 

  14. 14.

    Leroy, A., Galletti, F., & Chaboud, C. (2016). The EU restrictive trade measures against IUU fishing. Marine Policy, 64, 82–90.

    Google Scholar 

  15. 15.

    Miller, N. A., Roan, A., Hochberg, T., Amos, J., & Kroodsma, D. A. (2018). Identifying global patterns of transshipment behavior. Frontiers in Marine Science, 5, 240.

    Google Scholar 

  16. 16.

    Shaver, A., & Yozell, S. (2015). Casting a wider net. Chemical & Engineering News Archive, 93(41), 32–33.

    Article  Google Scholar 

  17. 17.

    Willette, D. A., & Cheng, S. H. (2017). Delivering on seafood traceability under the new US import monitoring program. Ambio, 47(1), 25–30.

    Google Scholar 

  18. 18.

    Thompson, M., Sylvia, G., & Morrissey, M. T. (2005). Seafood traceability in the United States: Current trends, system design, and potential applications. Compr Rev Food Sci Food Saf, 4(1), 1–7.

    Google Scholar 

  19. 19.

    Petersen, A., & Green, D. Seafood traceability: A practical guide for the U.S. industry.

  20. 20.

    UNECE. (2017). Traceability for sustainable trade a framework to design traceability systems for cross border trade. UNECE, Technical report 2017. TraceabilityForSustainableTrade.pdf.

  21. 21.

    WWF. (2015) Tractability principles for wild-caught fish products. WWF, Technical report. original/WWF_Traceability_Principles_for_Wild-Caugh_Fish_April_2015.pdf? 1430410438&_ga=1.161806972.1776882823.1455309792.

  22. 22.

    USAID Oceans. (2017). USAID oceans CDT101 conceptual overview. USAIDO, Technical report 2017. Oceans_CDT101_Conceptual Overview_March 2017.pdf.

  23. 23.

    Lewis, S. G., & Boyle, M. (2017). The expanding role of traceability in seafood: Tools and key initiatives. Journal of Food Science, 82, A13–A21.

    Google Scholar 

  24. 24.

    Natale, F., Gibin, M., Alessandrini, A., Vespe, M., & Paulrud, A. (2015). Mapping fishing effort through AIS data. PLoS ONE,.

    Article  Google Scholar 

  25. 25.

    Shepperson, J. L., Hintzen, N. T., Szostek, C. L., Bell, E., Murray, L. G., & Kaiser, M. J. (2018). A comparison of VMS and AIS data: The effect of data coverage and vessel position recording frequency on estimates of fishing footprints. ICES Journal of Marine Science, 75(3), 988–998.

    Google Scholar 

  26. 26.

    Yin, P., Ye, M., Lee, W. C., & Li, Z. (2014). Mining GPS data for trajectory recommendation. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Vol. 8444, LNAI, no. PART 2, pp. 50–61.

  27. 27.

    Mao, S., Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., & Huang, G.-B. (2017). An automatic identification system (AIS) database for maritime trajectory prediction and data mining. In Proceedings in adaptation, learning and optimization, pp. 241–257.

  28. 28.

    Watson, J. T., & Haynie, A. C. (2016). Using vessel monitoring system data to identify and characterize trips made by fishing vessels in the United States North Pacific. PLoS ONE, 11(10), e0165173.

    Google Scholar 

  29. 29.

    Stop Illegal Fishing. (2018). The potential use of ’automatic information systems—AIS as a fisheries monitoring tool. Fish-i Africa, pp. 1–21.

  30. 30.

    de Souza, E. N., Boerder, K., Matwin, S., & Worm, B. (2016). Improving fishing pattern detection from satellite AIS using data mining and machine learning. PLoS ONE, 11(7), e0158248.

    Google Scholar 

  31. 31.

    Russo, T., Dandrea, L., Parisi, A., Martinelli, M., Belardinelli, A., Boccoli, F., et al. (2016). Assessing the fishing footprint using data integrated from different tracking devices: Issues and opportunities. Ecological Indicators, 69, 818–827.

    Google Scholar 

  32. 32.

    Longépé, N., Hajduch, G., Ardianto, R., Joux, R., Nhunfat, B., Marzuki, M. I., et al. (2017). Completing fishing monitoring with spaceborne Vessel Detection System (VDS) and Automatic Identification System (AIS) to assess illegal fishing in Indonesia. Marine Pollution Bulletin, 131, 33–39.

    Google Scholar 

  33. 33.

    Soleymani, A. (2016). Cross-scale analysis in classification and segmentation of movement. Ph.D. dissertation, University of Zurich.

  34. 34.

    Dodge, S., Weibel, R., & Forootan, E. (2009). Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems, 33(6), 419–434.

    Google Scholar 

  35. 35.

    Teimouri, M., Indahl, U., Sickel, H., & Tveite, H. (2018). Deriving animal movement behaviors using movement parameters extracted from location data. ISPRS International Journal of Geo-Information, 7(2), 78.

    Google Scholar 

  36. 36.

    Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path: Straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2), 209–220.

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Postlethwaite, C. M., Brown, P., & Dennis, T. E. (2013). A new multi-scale measure for analysing animal movement data. Journal of Theoretical Biology, 317, 175–185.

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Dodge, S., Weibel, R., & Lautenschütz, A.-K. (2008). Towards a taxonomy of movement patterns. Information Visualization, 7, 240–252.

    Google Scholar 

  39. 39.

    Yoon, H., & Shahabi, C. (2008). Robust time-referenced segmentation of moving object trajectories. In Proceedings—IEEE international conference on data mining, ICDM, pp. 1121–1126.

  40. 40.

    Wan, Y., Zhou, C., & Pei, T. (2017). Semantic-geographic trajectory pattern mining based on a new similarity measurement. ISPRS International Journal of Geo-Information, 6(7), 212.

    Google Scholar 

  41. 41.

    Ying, J. J.-C., Lee, W.-C., & Tseng, V. S. (2013). Mining geographic-temporal-semantic patterns in trajectories for location prediction. ACM Transactions on Intelligent Systems and Technology, 5(1), 1–33.

    Google Scholar 

  42. 42.

    Hatami, N., Gavet, Y., & Debayle, J. (2018). Classification of time-series images using deep convolutional neural networks. In A. Verikas, P. Radeva, D. Nikolaev, J. Zhou (Eds.), Tenth international conference on machine vision (ICMV 2017), vol. 10696, International Society for Optics and Photonics. SPIE, pp. 242–249.

  43. 43.

    Karim, F., Majumdar, S., & Darabi, H. (2019). Insights into LSTM fully convolutional networks for time series classification. IEEE Access, 7, 67-718–67-725.

    Google Scholar 

  44. 44.

    Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., & Zhang, H. (2019). Deep learning with long short-term memory for time series prediction. IEEE Communications Magazine, 57(6), 114–119.

    Google Scholar 

  45. 45.

    McMaster, R. B. (1986). A statistical analysis of mathematical measures for linear simplification. The American Cartographer, 13(2), 103–116.

    MathSciNet  Google Scholar 

  46. 46.

    Rucklidge, W. J. (1997). Efficiently locating objects using the hausdorff distance. International Journal of Computer Vision, 24(3), 251–270.

    Article  Google Scholar 

  47. 47.

    Buchin, M., & Purves, R. S. (2013). Computing similarity of coarse and irregular trajectories using space-time prisms. In Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems—SIGSPATIAL’13, ACM Press, New York, pp. 456–459.

  48. 48.

    Chen, L., & Ng, R. (2004). On the marriage of LP-norms and edit distance. In Proceedings of the thirtieth international conference on very large data bases, Vol. 30, ser. VLDB ’04. VLDB Endowment, pp. 792–803.

  49. 49.

    Vlachos, M., Kollios, G., & Gunopulos, D. (2002). Discovering similar multidimensional trajectories. In Proceedings 18th international conference on data engineering, pp. 673–684.

  50. 50.

    Kim, S.-W., Park, S., & Chu, W. W. (2004). Efficient processing of similarity search under time warping in sequence databases: An index-based approach. Information Systems, 29(5), 405–420.

  51. 51.

    Mikolov, T., Karafiát, M., Burget, L., & Khudanpur, S. (2010). Recurrent neural network based language model. Proceedings of INTERSPEECH, pp. 1045–1048.

  52. 52.

    Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Google Scholar 

  53. 53.

    Switonski, A., Josinski, H., & Wojciechowski, K. (2018). Dynamic time warping in classification and selection of motion capture data. Multidimensional Systems and Signal Processing, 2018, 1–32.

    MATH  Google Scholar 

  54. 54.

    Yuan, J., Douzal-Chouakria, A., Varasteh Yazdi, S., & Wang, Z. (2019). A large margin time series nearest neighbour classification under locally weighted time warps. Knowledge and Information Systems, 59(1), 117–135.

    Article  Google Scholar 

  55. 55.

    Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.

    MATH  Google Scholar 

  56. 56.

    Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–49.

    MATH  Google Scholar 

  57. 57.

    Keogh, E. J., & Pazzani, M.J. (2001). Derivative dynamic time warping, SIAM Publications.

  58. 58.

    Abraham, Z., & Tan, P.-N. (2010). An integrated framework for simultaneous classification and regression of time-series data. In Proceedings of the 2010 SIAM international conference on data mining, Society for Industrial and Applied Mathematics, Philadelphia, pp. 653–664.

  59. 59.

    Díaz, S. P., & Vilar, J. A. (2010). Comparing several parametric and nonparametric approaches to time series clustering: A simulation study. Journal of Classification, 27(3), 333–362.

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Montero, P., & Vilar, J. A. (2014). TSclust: An R package for time series clustering. Journal of Statistical Software, 62(1), 1–43.

    Google Scholar 

  61. 61.

    Vaughan, N., & Gabrys, B. (2016). Comparing and combining time series trajectories using dynamic time warping. Procedia Computer Science, 96, 465–474.

    Google Scholar 

  62. 62.

    Huang, K., Tan, T., & Zhang, Z. (2006). Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In 2006 18th International conference on pattern recognition, Vol. 3. IEEE Computer Society, Los Alamitos, CA, USA,pp. 1135–1138.

  63. 63.

    Li, Y., Hu, H., Wen, Y., & Zhang, J. (2016). Power series classification: A hybrid of LSTM and a novel advancing dynamic time warping. CoRR.

  64. 64.

    Łuczak, M. (2016). Combinseasean catch documentation scheme for marine capture fisheries. Journal of Intelligent & Fuzzy Systems, 1, 373–380.

    Google Scholar 

  65. 65.

    Yuan, J., Zheng, Y., & Xie, X. (2012). Discovering regions of different functions in a city using human mobility and pois. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, ACM, New York, NY, USA, pp. 186–194.

  66. 66.

    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34.

    Google Scholar 

  67. 67.

    Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.

    Google Scholar 

  68. 68.

    Gullo, F. (2015). From patterns in data to knowledge discovery: What data mining can do. Physics Procedia, 62, 18–22.

    Google Scholar 

  69. 69.

    FAO Fisheries and Aquaculture Department. (2001). Fishing gear types: Bottom trawls.

  70. 70.

    Bertrand, S., Burgos, J., Gerlotto, F., & Atiquipa, J. (2005). Levy trajectories of Peruvian purse-seiners as an indicator of the spatial distribution of anchovy. ICES Journal of Marine Science, 62(3), 477–482.

    Google Scholar 

  71. 71.

    Lee, J., South, A. B., & Jennings, S. (2010). Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES Journal of Marine Science, 67(6), 1260–1271.

    Google Scholar 

  72. 72.

    Gong, L., Hitomi Sato, B., Toshiyuki Yamamoto, B., Tomio Miwa, B., & Takayuki Morikawa, B. (2015). Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines. Journal of Modern Transportation, 23(3), 202–213.

    Google Scholar 

  73. 73.

    Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Technical report, University of Munich.

  74. 74.

    Fabio Mazzarella, G. O., Vespe, M., Damalas, D. (2014). Discovering vessel activities at sea using AIS data: Mapping of fishing footprints. In 17th International conference on information fusion (FUSION).

  75. 75.

    Dodge, S., Laube, P., & Weibel, R. (2012). Movement similarity assessment using symbolic representation of trajectories. International Journal of Geographical Information Science, 26(9), 1563–1588.

    Google Scholar 

  76. 76.

    Shamoun-Baranes, J., Bouten, W., Camphuysen, C. J., & Baaij, E. (2011). Riding the tide: Intriguing observations of gulls resting at sea during breeding. IBIS, 153(2), 411–415.

    Google Scholar 

  77. 77.

    Cheung, A., Zhang, S., Stricker, C., & Srinivasan, M. V. (2007). Animal navigation: The difficulty of moving in a straight line. Biological Cybernetics, 97(1), 47–61.

    MathSciNet  MATH  Google Scholar 

  78. 78.

    Laube, P., & Purves, R. S. (2011). How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS, 15(3), 401–418.

    Google Scholar 

  79. 79.

    Marzuki, M. I., Gaspar, P., Garello, R., Kerbaol, V., & Fablet, R. (2017). Fishing gear identification from vessel-monitoring-system-based fishing vessel trajectories. IEEE Journal of Oceanic Engineering, 43(3), 3–7.

    Google Scholar 

  80. 80.

    Li, X. (2014). Using complexity measures of movement for automatically detecting movement types of unknown GPS trajectories. American Journal of Geographic Information System, 3(2), 63–74.

    Google Scholar 

  81. 81.

    Kitamura, T., & Imafuku, M. (2015). Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes. Proceedings of Biological Sciences, 282(1809), 20150483.

    Google Scholar 

  82. 82.

    Shamble, P. S., Hoy, R. R., Cohen, I., & Beatus, T. (2017). Walking like an ant: A quantitative and experimental approach to understanding locomotor mimicry in the jumping spider Myrmarachne formicaria. Proceedings of the Royal Society B: Biological Sciences, 284(1858), 20170308.

    Google Scholar 

  83. 83.

    McLean, D. J., & Skowron Volponi, M. A. (2018). trajr: An R package for characterisation of animal trajectories. Ethology, 124(6), 440–448.

    Google Scholar 

  84. 84.

    Zhang, Z., Tavenard, R., Bailly, A., Tang, X., Tang, P., & Corpetti, T. (2017). Dynamic time warping under limited warping path length. Information Sciences, 393, 91–107.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Supaporn Kiattisin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chuaysi, B., Kiattisin, S. Fishing Vessels Behavior Identification for Combating IUU Fishing: Enable Traceability at Sea. Wireless Pers Commun 115, 2971–2993 (2020).

Download citation


  • Traceability at sea
  • Fishing vessels behavior
  • Trajectory and time series analysis
  • Global and local features
  • KNN for MLP