Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities


The concept of communication using acoustic media of underwater sensor networks is important in pollution monitoring, oceanographic data collection and meet future development needs. To improve communication security, it is proposed co-communication of underwater sensor networks with quantum and acoustic communication capabilities by taking advantage of quantum communication and entanglement correlation nonlocality. Between the surface base station and autonomous underwater vehicle, it shares quantum keys by quantum communication and classical communication. Between autonomous underwater vehicle and underwater nodes, it employs symmetric cryptography without causing much encryption and decryption overhead to relay information and correct received information with low-complex on current technique level. In addition, it particularly analyzes the security and throughput efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Li, C., Xu, Y., Xu, C., An, Z., Diao, B., & Li, X. (2016). DTMAC: A delay tolerant MAC protocol for underwater wireless sensor networks. IEEE Sensors Journal, 16(11), 4137–4146.

    Article  Google Scholar 

  2. 2.

    Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 65(3), 257–279.

    Article  Google Scholar 

  3. 3.

    Li, H., He, Y., Cheng, X., Zhu, H., & Sun, L. M. (2015). Security and privacy in localization for underwater sensor networks. IEEE Communications Magazine, 53(11), 56–62.

    Article  Google Scholar 

  4. 4.

    Bennett, C. H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Physical Review Letters, 70(13), 1895–1899.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661–663.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical Review Letters, 68(5), 557–559.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Patel, K. A., Dynes, J. F., Choi, I., Sharpe, A. W., Dixon, A. R., Yuan, Z. L., et al. (2012). Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Physical Review X, 12(2), 041010.

    Article  Google Scholar 

  8. 8.

    Beige, A., Englert, B. G., & Kurtsiefer, C. T. (2002). Secure communication with a publicly known key. Acta Physica Polonica A, 101(3), 357–368.

    Article  Google Scholar 

  9. 9.

    Deng, F. G., Long, G. L., & Liu, X. S. (2003). Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Physical Review A, 64(4), 042317.

    Article  Google Scholar 

  10. 10.

    Wang, K., Yu, X. T., Lu, S. L., & Gong, Y. X. (2014). Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Physical Review A, 89(2), 022329.

    Article  Google Scholar 

  11. 11.

    Aguilar, E. A., Ramanathan, R., Kofler, J., & Pawowsk, M. (2016). Completely device-independent quantum key distribution. Physical Review A, 92(2), 022305.

    Article  Google Scholar 

  12. 12.

    Ewert, F., Bergmann, M., & van Loock, P. (2016). Ultrafast long-distance quantum communication with static linear optics. Physical Review A, 92(2), 022305.

    Google Scholar 

  13. 13.

    Li, J., Li, N., Li, L. L., & Wang, T. (2016). One step quantum key distribution based on EPR entanglement. Scientific Reports, 6(28767), 1.

    Google Scholar 

  14. 14.

    Domingo, M. C. (2011). Securing underwater wireless communication networks. IEEE Wireless Communications, 18(1), 22–28.

    Article  Google Scholar 

  15. 15.

    Chao, C. M., Wang, Y. Z., & Lu, M. W. (2013). Multiple-rendezvous multichannel MAC protocol design for underwater sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, 43(1), 128–138.

    Article  Google Scholar 

  16. 16.

    Han, G., Jiang, J., Sun, N., & Shu, L. (2015). Secure communication for underwater acoustic sensor networks. IEEE Communications Magazine, 53(8), 54–60.

    Article  Google Scholar 

  17. 17.

    Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Geographic and opportunistic routing for underwater sensor networks. IEEE Transactions on Computers, 65(2), 548–561.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Huang, Y., Zhou, S., Shi, Z., & Lai, L. (2016). Channel frequency response-based secret key generation in underwater acoustic systems. IEEE Transactions on Wireless Communications, 15(9), 5875–5888.

    Article  Google Scholar 

Download references


This research was supported by shandong Province Higher Educational Science and Technology Program (No.J18KZ012), and National Natural Science Foundation of China (Nos. 11975132, 61772295), and Shandong Provincial Natural Science Foundation, China (No., ZR2019YQ01).

Author information



Corresponding author

Correspondence to Shumei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Teng, J., Hu, T. et al. Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities. Wireless Pers Commun 113, 337–347 (2020).

Download citation


  • Co-communication
  • Entanglement
  • Throughput
  • Quantum communication