Performance Analysis of Cooperative Underlay Spectrum Sharing System in Co-channel Interference Limited Environment

Abstract

In this paper, performance analysis of an asynchronous distributed space time block coded system with optimum combining at the cognitive radio receiver (CR-Rx) has been done in a cooperative underlay cognitive Internet of Things network under the influence of multiple co-channel primary users (PUs) interferers. The transmit power strategy being employed at the CR-Tx considers the PIP (peak interference power) at the PU-Rx and peak transmit power constraints at the CR-Tx, respectively. We have derived the probability density function of the signal-to-interference ratio (SIR) at the destination for the proposed system. The system is numerically and mathematically analyzed in terms of average post processed SIR (APPSIR), ergodic capacity (\({\text{C}}_{\text{erg}}\)), average bit error rate (ABER) and outage probability. All the numerical outcomes are in corroboration with its simulation counterpart.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication,6(4), 13–18. https://doi.org/10.1109/98.788210.

    Article  Google Scholar 

  2. 2.

    Khoshkholgh, M. G., Navaieand, K., & Yanikomeroglu, H. (2010). Access strategies for spectrum sharing in fading environment: Overlay, underlay and mixed. IEEE Transactions on Mobile Computing,9(12), 1780–1793.

    Article  Google Scholar 

  3. 3.

    Bindra, K. V., Sharma, S., & Khanna, R. (2017). Performance analysis of combined space time block coding with generalized selection combining in underlay cognitive radio. Wireless Personal Communications,95(3), 2561–2573.

    Article  Google Scholar 

  4. 4.

    Kang, X., Liang, C. Y., Garg, H. K., & Zhang, R. (2011). Optimal power allocation strategies for adding cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications,29(2), 374–383.

    Article  Google Scholar 

  5. 5.

    Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory,49(10), 2415–2425. https://doi.org/10.1109/TIT.2003.817829.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Li, Q., Hu, R. Q., Qian, Y., & Wu, G. (2012). Cooperative communications for wireless networks: Techniques and applications in LTE-advanced systems. IEEE Wireless Communications,50(12), 22–29.

    Google Scholar 

  7. 7.

    Wang, D., Ren, P., & Cheng, J. (2018). Cooperative secure communication in two-hop buffer-aided networks. IEEE Transactions on Communications,66(3), 972–985. https://doi.org/10.1109/tcomm.2017.2776114.

    Article  Google Scholar 

  8. 8.

    Jing, Y., & Hassibi, B. (2006). Distributed space-time coding in wireless relay networks. IEEE Transactions on Communications,5(12), 3524–3536.

    Google Scholar 

  9. 9.

    Peng, T., & de Lamare, R. C. (2016). Adaptive buffer-aided distributed space-time coding for cooperative wireless networks. IEEE Transactions on Communications,64(5), 1888–1900.

    Article  Google Scholar 

  10. 10.

    Nitti, M., Popescu, V., & Fadda, M. (2019). Using an IoT platform for trustworthy D2D communications in a real indoor environment. IEEE Transactions on Network and Service Management,16(1), 234–245. https://doi.org/10.1109/TNSM.2018.2885043.

    Article  Google Scholar 

  11. 11.

    Bartoli, G., Fantacci, R., & Marabissi, D. (2019). Resource allocation approaches for two-tiers machine-to-machine communications in an interference limited environment. IEEE Internet of Things Journal,6(5), 9112–9122. https://doi.org/10.1109/JIOT.2019.2927812.

    Article  Google Scholar 

  12. 12.

    Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based internet of things systems: A survey. IEEE Access,7, 97887–97908. https://doi.org/10.1109/ACCESS.2019.2929915.

    Article  Google Scholar 

  13. 13.

    Ikki, S. S., & Aissa, S. (2012). Impact of imperfect channel estimation and co-channel interference on regenerative cooperative networks. IEEE Wireless Communications Letters,1(5), 436–439. https://doi.org/10.1109/WCL.2012.062512.120003.

    Article  Google Scholar 

  14. 14.

    Gu, Y., Ikki, S. S., & Aissa, S. (2013). Opportunistic cooperative communication in the presence of co-channel interferences and outdated channel information. IEEE Communications Letters,17(10), 1948–1951. https://doi.org/10.1109/LCOMM.2013.090213.131493.

    Article  Google Scholar 

  15. 15.

    Lee, K. C., Li, C. P., Wang, T. Y., & Li, H. J. (2014). Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and co-channel interference. IEEE Transactions on Wireless Communications,13(6), 3070–3087. https://doi.org/10.1109/TWC.2014.042814.130047.

    Article  Google Scholar 

  16. 16.

    Balti, E., & Guizani, M. (2018). Mixed RF/FSO cooperative relaying systems with co-channel interference. IEEE Transactions on Communications,66(9), 4014–4027. https://doi.org/10.1109/tcomm.2018.2818697.

    Article  Google Scholar 

  17. 17.

    Bindra, K. V., Khanna, R., & Sharma, S. (2018). Performance analysis of optimum combiner in power limited cognitive radios with multiple primary interferers. Electronika ir Electrotechnika,24(1), 52–60. https://doi.org/10.5755/j01.eie.24.1.20159.

    Article  Google Scholar 

  18. 18.

    Karabulut, M. A., Aslan, H., Özdemir, Ö. & Ilhan, H. (2017). The effect of co-channel interference in DF based MARC system with relay selection. In 10th international conference on electrical and electronics engineering (ELECO) (pp. 629–633), Bursa.

  19. 19.

    Ilhan, H. (2015). Performance analysis of cooperative vehicular systems with co-channel interference over cascaded Nakagami-m fading channels. Wireless Personal Communications,83(1), 203–214.

    Article  Google Scholar 

  20. 20.

    Yu, H., Lee, I. H., & Stuber, G. L. (2012). Outage probability of decode-and-forward cooperative relaying systems with co-channel interference. IEEE Transactions on Wireless Communications,11(1), 266–274. https://doi.org/10.1109/TWC.2011.111211.110250.

    Article  Google Scholar 

  21. 21.

    Al-Qahtani, F. S., Yang, J., Radaydeh, R. M., & Alnuweiri, H. (2013). On the capacity of two-hop AF relaying in the presence of interference under Nakagami-m fading. IEEE Communications Letters,17(1), 19–22. https://doi.org/10.1109/LCOMM.2012.111612.121151.

    Article  Google Scholar 

  22. 22.

    da Costa, D. B., Ding, H., & Ge, J. (2011). Interference-limited relaying transmissions in dual-hop cooperative networks over Nakagami-m fading. IEEE Communications Letters,15(5), 503–505. https://doi.org/10.1109/LCOMM.2011.032111.102112.

    Article  Google Scholar 

  23. 23.

    Suraweera, N., & Beaulieu, N. C. (2014). Optimum combining with joint relay and antenna selection for multiple-antenna relays in the presence of co-channel interference. IEEE Communications Letters,18(8), 1459–1462. https://doi.org/10.1109/LCOMM.2014.2329922.

    Article  Google Scholar 

  24. 24.

    Winters, J. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Journal of Selected Areas in Communication,2(4), 528–539.

    Article  Google Scholar 

  25. 25.

    Suraweera, N., & Beaulieu, N. C. (2014). The impact of imperfect channel estimations on the performance of optimum combining in decode-and-forward relaying in the presence of co-channel interference. IEEE Wireless Communications Letters,3(1), 18–21. https://doi.org/10.1109/WCL.2013.101613.130636.

    Article  Google Scholar 

  26. 26.

    Merino, H. W., Câmara, C. E., & Almeida, C. D. (2016). On the performance of DF relay selection with optimum combining and co-channel interference. In IEEE 13th international conference on mobile ad hoc and sensor systems (MASS) (pp. 377–379), Brasilia. https://doi.org/10.1109/mass.2016.061.

  27. 27.

    Afana, A., Ikki, S., Ngatched, T. M. N., & Dobre, O. A. (2015). Performance analysis of cooperative networks with optimum combining and co-channel interference. In IEEE international conference on communication workshop (ICCW) (pp. 949–954), London. https://doi.org/10.1109/iccw.2015.7247298.

  28. 28.

    Wei, S., Goeckel, D. L., & Valenti, M. C. (2006). Asynchronous cooperative diversity. IEEE Transactions on Wireless Communications,5(6), 1547–1557.

    Article  Google Scholar 

  29. 29.

    Cao, R., Qu, F., & Yang, L. (2016). Asynchronous amplify-and-forward relay communications for underwater acoustic networks. IET Communications,10(6), 677–684.

    Article  Google Scholar 

  30. 30.

    Damen, M. O., & Hammons, A. R. (2007). Delay-tolerant distributed-TAST codes for cooperative diversity. IEEE Transactions on Information Theory,53(10), 3755–3773.

    MathSciNet  Article  Google Scholar 

  31. 31.

    Barghi, S., & Jafarkhani, H. (2015). Exploiting asynchronous amplify-and-forward relays to enhance the performance of IEEE 802.11 networks. IEEE/ACM Transactions on Networking,23(2), 479–490.

    Article  Google Scholar 

  32. 32.

    Wang, W., Zheng, F. C., & Fitch, M. (2015). Design of delay-tolerant space-time codes with limited feedback. IEEE Transactions on Vehicular Technology,64(2), 839–845.

    Article  Google Scholar 

  33. 33.

    Sood, V. V., Sharma, S., & Khanna, R. (2018). Pairwise error probability analysis of low density parity check coded asynchronous distributed space time block codes. Electronika ir Electrotechnika,24(6), 87–91.

    Google Scholar 

  34. 34.

    Suraweera, N., & Beaulieu, N. C. (2015). Optimum combining in dual-hop AF relaying for maximum spectral efficiency in the presence of co-channel interference. IEEE Transactions on Communications,63(3), 2071–2080. https://doi.org/10.1109/TCOMM.2015.2424234.

    Article  Google Scholar 

  35. 35.

    Charash, U. (1979). Reception through Nakagami fading multipath channels with random delays. IEEE Transactions on Communications,27(4), 657–670.

    Article  Google Scholar 

  36. 36.

    Shah, A., & Haimovich, H. (1998). Performance analysis of optimum in wireless communications with Rayleigh fading and co-channel interference. IEEE Transactions on Communications,46(4), 473–479.

    Article  Google Scholar 

  37. 37.

    Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). Hoboken: Wiley.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kavita Vij Bindra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sood, V.V., Bindra, K.V., Khanna, R. et al. Performance Analysis of Cooperative Underlay Spectrum Sharing System in Co-channel Interference Limited Environment. Wireless Pers Commun 113, 99–114 (2020). https://doi.org/10.1007/s11277-020-07180-x

Download citation

Keywords

  • Amplify and forward (AF)
  • Cognitive radios
  • Cooperative communication
  • Delay tolerant codes
  • Linear dispersion (LD) codes
  • Optimum combining