A Survey on Architecture, Protocols and Challenges in IoT


Internet of Things (IoT) is an emerging paradigm which aims to inter-connect all smart physical devices, so that the devices together can provide smart services to the users. Some of the IoT applications include smart homes, smart cities, smart grids, smart retail, etc. Since IoT systems are built up with heterogeneous hardware and networking technologies, connecting them to the software/application level to extract information from large amounts of data is a complex task. In this paper, we have surveyed various architecture and protocols used in IoT systems and proposed suitable taxonomies for classifying them. We have also discussed the technical challenges, such as security and privacy, interoperability, scalability, and energy efficiency. We have provided an in-depth coverage of recent research works for every mentioned challenge. The objective of this survey is to help future researchers to identify IoT specific challenges and to adopt appropriate technology depending on the application requirements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    http://www.iot-a.eu/public, November 2016.

  2. 2.

    http://www.fp7-aspire.eu/, November 2016.

  3. 3.

    Zhu, Q., Wang, R., Chen, Q., Liu, Y., & Qin, W. (2010). IoT gateway: Bridging wireless sensor networks into internet of things. In IEEE/IFIP 8th international conference on embedded and ubiquitous computing (EUC), 2010 (pp. 347–352).

  4. 4.

    Fan, C., Wen, Z., Wang, F., & Wu, Y. (2011). A Middleware of Internet of things based on Zigbee and RFID. In IET international conference on Communication Technology and Application (ICCTA), 2011 (pp. 732–736).

  5. 5.

    Castellani, A.P., Loreto, S., Bui, N., & Zorzi, M. (2011). Quickly interoperable Internet of Things using simple transparent gateways. In Position paper in interconnecting smart objects with the internet workshop, 2011.

  6. 6.

    Chi, Q., Yan, H., Zhang, C., Pang, Z., & Xu, L. D. (2014). A reconfigurable smart sensor interface for industrial WSN in IoT environment. IEEE Transactions on Industrial Informatics,2014, 1417–1425.

    Google Scholar 

  7. 7.

    Valdivieso Caraguay, A. L., Peral, A. B., Barona Lopez, L. I., & Garcia Villalba, L. J. (2014). SDN—Evolution and opportunities in development of IoT application. International Journal of Distributed Sensor Networks,10, 735142.

    Article  Google Scholar 

  8. 8.

    ETSI, V. (2011). Machine-to-machine communications (M2M): Functional architecture. Int. Telecommun. Union, Geneva, Switzerland, Tech. Rep. TS, 102, 690.

  9. 9.

    Atzori, L., Iera, A., & Morabitoc, G. (2010). The internet of things: A survey. Computer Networks,54, 2787–2805.

    MATH  Article  Google Scholar 

  10. 10.

    Miorandi, D., Sicari, S., Pellegrini, F. D., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks,10, 1497–1516.

    Article  Google Scholar 

  11. 11.

    Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,10, 2233–2243.

    Article  Google Scholar 

  12. 12.

    Singh, D., Tripathi, G., & Jara, A. J. (2014, March). A survey of Internet-of-Things: Future vision, architecture, challenges and services. In 2014 IEEE world forum on Internet of things (WF-IoT) (pp. 287–292). IEEE.

  13. 13.

    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials,17(4), 2347–2376.

    Article  Google Scholar 

  14. 14.

    Dlodlo, N., Foko, T., Mvelase, P., & Mathaba, S. (2012). The state of affairs in internet of things research. London: Academic Conferences International Ltd.

    Google Scholar 

  15. 15.

    Stankovic, J. A. (2014). Research directions for the internet of things. IEEE Internet of Things Journal,1(1), 3–9.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Chen, X. Y., & Jin, Z. G. (2012). Research on key technology and applications for internet of things. International Conference on Medical Physics and Biomedical Engineering (ICMPBE),33, 561–566.

    Google Scholar 

  17. 17.

    Palattella, M. R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L. A., Boggia, G., et al. (2013). Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys & Tutorials,15(3), 1389–1406.

    Article  Google Scholar 

  18. 18.

    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., McCann, J. A., & Leung, K. K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications,20(6), 91–98.

    Article  Google Scholar 

  19. 19.

    Keoh, S., Kumar, S., & Tschofenig, H. (2014). Securing the internet of things: A standardization perspective. IEEE Internet of Things Journal,1(3), 265–275.

    Article  Google Scholar 

  20. 20.

    Riahi, A., Natalizio, E., Challal, Y., Mitton, N., & Iera, A. (2014). A systemic and cognitive approach for IoT security. In IEEE international conference on computing, networking and communications (ICNC), 2014, pp. 183-188.

  21. 21.

    Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications,42, 120–134.

    Article  Google Scholar 

  22. 22.

    Yang, D. L., Liu, F., & Liang, Y. D. (2010). A Survey of the Internet of Things. In Proceedings of the 1st international conference on e-business intelligence (ICEBI), 2010.

  23. 23.

    Mattern, F., & Floerkemeier, C. (2010). From the internet of computers to the internet of things. In From active data management to event-based systems and more (pp. 242–259).

  24. 24.

    Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., & Razafindralambo, T. (2011). A survey on facilities for experimental internet of things research. IEEE Communications Magazine,49(11), 58–67.

    Article  Google Scholar 

  25. 25.

    Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things—A survey of topics and trends. Information Systems Frontiers,17(2), 261–274.

    Article  Google Scholar 

  26. 26.

    Gubbi, J., Buyya, R., Marusic, S., & Palaniswamia, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems,29, 1645–1660.

    Article  Google Scholar 

  27. 27.

    Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A survey of middleware for internet of things. Recent Trends in Wireless and Mobile Networks,162, 288–296.

    Article  Google Scholar 

  28. 28.

    Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communications Surveys & Tutorials,16(1), 414–454.

    Article  Google Scholar 

  29. 29.

    Mainetti, L., Patrono, L., & Vilei, A. (2011, September). Evolution of wireless sensor networks towards the internet of things: A survey. In 2011 19th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6). IEEE.

  30. 30.

    Aggarwal, C. C., Ashish, N., & Sheth, A. (2013). The internet of things: A survey from the data-centric perspective. In Managing and mining sensor data (pp. 383–428). Springer US.

  31. 31.

    Schmid, S., A.Broring, Kramer, D., Kabisch, S., Zappa, A., Lorenz, M., et al. (2016). An architecture for interoperable IoT ecosystems.

  32. 32.

    Ramparany, F., Marquez, F. G., Soriano, J., & Elsaleh, T. (2014 October). Handling smart environment devices, data and services at the semantic level with the FI-WARE core platform. In Proceedings of IEEE international conference on big data (Big Data) (pp. 14–20).

  33. 33.

    Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J. P., Riahi, M., et al. (2015). Openiot: Open source internet-of-things in the cloud. In Proceedings of conference on interoperability and open-source solutions for the internet of things (pp. 13–25). Springer.

  34. 34.

    Yu, J., Lee, N., Pyo, C. S., & Lee, Y. S. (2016). WISE: Web of object architecture on IoT environment for smart home and building energy management. Journal of Supercomputing,2016, 1–16.

    Google Scholar 

  35. 35.

    Datta, S. K., Bonnet, C., & Nikaein, N. (2014 March). An IoT gateway centric architecture to provide novel M2M services. In Proceedings of IEEE world forum on internet of things (WF-IoT) (pp. 514–519).

  36. 36.

    Meloni, A., Pegoraro, P. A., Atzori, L., & Sulis, S. (2016, April). An IoT architecture for wide area measurement systems: A virtualized PMU based approach. In Proceedings of IEEE international energy conference (ENERGYCON) (pp. 1–6).

  37. 37.

    Ungurean, I., Gaitan, N. C., & Gaitan, V. G. (2014 May). An IoT architecture for things from industrial environment. In Proceedings of 10th international conference on communications (COMM) (pp. 1–4).

  38. 38.

    Yashiro, T., Kobayashi, S., Koshizuka, N., & Sakamura, K. (2013, August). An internet of things (IoT) architecture for embedded appliances. In Proceedings of IEEE Region 10 humanitarian technology conference (R10-HTC) (pp. 314–319).

  39. 39.

    Pisching, M. A., Junqueira, F., dos Santos Filho, D. J., & Miyagi, P. E. (2016, September). An architecture based on IoT and CPS to organize and locate services. In Proceedings of IEEE 21st international conference on emerging technologies and factory automation (ETFA) (pp. 1–4).

  40. 40.

    Datta, S. K., & Coughlin, T. (2016, September). An IoT architecture enabling digital senses. In Proceedings of IEEE 6th international conference on consumer electronics-Berlin (ICCE-Berlin) (pp. 67–68).

  41. 41.

    Fremantle, P. (2014). A reference architecture for the internet of things. WSO2 White Paper.

  42. 42.

    Hada, H., & Mitsugi, J. (2011). Epc based internet of things architecture. In IEEE international conference on RFID technologies and applications (RFID-TA), 2011 (pp. 527–532).

  43. 43.

    http://www.collaberatact.com/overview-architecture-iot-works/, November 2016.

  44. 44.

    Qanbari, S., Behinaein, N., Rahimzadeh, R., & Dustdar, S. (2015, August). Gatica: Linked sensed data enrichment and analytics middleware for IoT gateways. In Proceedings of 3rd international conference on future internet of things and cloud (FiCloud) (pp. 38–43).

  45. 45.

    Li-Hong, W., Hai-Kun, T., & Hua, Y. G. (2014, June). Sensors access scheme design based on internet of things gateways. In Proceedings of fifth international conference on intelligent systems design and engineering applications (ISDEA) (pp. 901–904).

  46. 46.

    Nastic, S., Truong, H. L., & Dustdar, S. (2015). Sdg-pro: A programming framework for software-defined iot cloud gateways. Journal of Internet Services and Applications,6(1), 21.

    Article  Google Scholar 

  47. 47.

    http://link.springer.com/chapter/10.1007%2F978-3-642-38082-2_14, November 2016.

  48. 48.

    Ning, H., & Wang, Z. (2011). Future Internet of things architecture: Like mankind neural system or social organization framework? IEEE Communications Letters,15(4), 461–463.

    Article  Google Scholar 

  49. 49.

    Kumar, K., Bose, J., & Tripathi, S. (2016, December). A unified web interface for the internet of things. In Proceedings of IEEE INDICON.

  50. 50.

    Prehofer, C. (2015, December). Models at REST or modelling RESTful interfaces for the Internet of Things. In Proceedings of IEEE 2nd world forum on internet of things (WF-IoT) (pp. 251–255).

  51. 51.

    Abidin, S. A. H. Z., & Ibrahim, S. N. (2015, November). Web-based monitoring of an automated fertigation system: An IoT application. In Proceedings of IEEE 12th Malaysia international conference on communications (MICC) (pp. 1–5).

  52. 52.

    Serrano, M., Quoc, H. N. M., Hauswirth, M., Wang, W., Barnaghi, P., & Cousin, P. (2013). Open services for IoT cloud applications in the future internet. IEEE international symposium on world of wireless, mobile and multimedia networks (WoWMoM),2013, 1–6.

    Google Scholar 

  53. 53.

    http://postscapes.com/internet-of-things-protocols, November 2016.

  54. 54.

    https://en.wikipedia.org/wiki/IEEE_802.15.4, November 2016.

  55. 55.

    Ma, X., & Luo, W. (2008, December). The analysis of 6LoWPAN technology. In Proceedings of IEEE Pacific-Asia workshop on computational intelligence and industrial application, PACIIA’08 (Vol. 1, pp. 963–966).

  56. 56.

    https://openwsn.atlassian.net/wiki/display/OW/IEEE802.15.4e, November 2016.

  57. 57.

    https://en.wikipedia.org/wiki/6LoWPAN, November 2016.

  58. 58.

    http://searchmicroservices.techtarget.com/definition/UDP-User-Datagram-Protocol, November 2016.

  59. 59.

    Dunkels, A. (2002). uIP-A free small TCP/IP stack. Technical report.

  60. 60.

    Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine,49(4), 96–101.

    Article  Google Scholar 

  61. 61.

    http://coap.technology/, November 2016.

  62. 62.

    https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php, November 2016.

  63. 63.

    http://opendds.org/, November 2016.

  64. 64.

    http://www.deepdarc.com/2013/01/29/introducing-smcp/, November 2016.

  65. 65.

    Perkins, C. E., & Royer, E. M. (1999). Ad hoc on-demand distance vector routing. In Proceedings of the second IEEE workshop on mobile computing systems and applications (WMCSA), 1999 (pp. 90–100).

  66. 66.

    Marina, M. K., & Das, S. R. (2002). Ad hoc on-demand multipath distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review,6(3), 92–93.

    Article  Google Scholar 

  67. 67.

    Zhu, D., Cui, G., Huang, J., & Zhang, Z. (2013). The research of a new adaptive on-demand routing protocol in WSN. In Fifth international conference on machine vision (ICMV 12), 2013 (pp. 87842B–87842B).

  68. 68.

    Zhou, J., Xu, H., Qin, Z., Peng, Y., & Lei, C. (2013). Ad hoc on-demand multipath distance vector routing protocol based on node state. Communications and Network,5, 408.

    Article  Google Scholar 

  69. 69.

    Machado, K., Rosario, D., Cerqueira, E., Loureiro, A. A., Neto, A., & de Souza, J. N. (2013). A routing protocol based on energy and link quality for internet of things applications. Sensors,13(2), 1942–1964.

    Article  Google Scholar 

  70. 70.

    Sobin, C. C., Raychoudhury, V., & Saha, S. (2017, January). An energy-efficient and buffer-aware routing protocol for opportunistic smart traffic management. In Proceedings of the 18th ACM international conference on distributed computing and networking (p. 25).

  71. 71.

    Raheem, A., Lasebae, A., Aiash, M., & Loo, J. (2013). Supporting Communications in the IoTs using the Location/ID Split Protocol. In IEEE second international conference on future generation communication technology, 2013 (pp. 143–147).

  72. 72.

    Xia, D. F., & Li, Q. (2013). A routing protocol for congestion control in RFID wireless sensor networks based on stackelberg game with sleep mechanism. In IEEE 12th international symposium on distributed computing and applications to business, engineering & science (DCABES), 2013 (pp. 207–211).

  73. 73.

    Chze, P. L. R., & Leong, K. S. (2014). A secure multi-hop routing for IoT communication. In IEEE world forum on internet of things (WF-IoT), 2014, (pp. 428–432).

  74. 74.

    Xin, H. M., & Yang, K. (2013). A routing protocol for internet of things with high-speed mobile nodes. International Journal of Advancements in Computing Technology,5, 197–205.

    Google Scholar 

  75. 75.

    Tseng, C. H. (2016). Multipath load balancing routing for internet of things. Journal of Sensors,2016, 1–8.

    Google Scholar 

  76. 76.

    Jabbar, W. A., Ismail, M., & Nordin, R. (2013, November). Evaluation of energy consumption in multipath OLSR routing in Smart City applications. In Proceedings ofIEEE Malaysia international conference on communications (MICC) (pp. 401–406).

  77. 77.

    http://tools.ietf.org/html/rfc6347, November 2016.

  78. 78.

    http://tools.ietf.org/html/draft-moskowitz-hip-dex-01, November 2016.

  79. 79.

    http://tools.ietf.org/html/draft-kivinen-ipsecme-ikev2-minimal-00, November 2016.

  80. 80.

    Choi, J., & Ha, J. (2016, June). Secret key transmission based on channel reciprocity for secure IoT. In Proceedings of European conference on networks and communications (EuCNC) (pp. 388–392).

  81. 81.

    Liu, J., Xiao, Y., & Chen, C. P. (2012, June). Authentication and access control in the internet of things. In Proceedings of 32nd international conference on distributed computing systems workshops (ICDCSW) (pp. 588–592).

  82. 82.

    Lin, X., Lu, R., Shen, X., Nemoto, Y., & Kato, N. (2009). SAGE: A strong privacy-preserving scheme against global eavesdropping for ehealth systems. IEEE Journal on Selected Areas in Communications,27(4), 365–378.

    Article  Google Scholar 

  83. 83.

    Isa, M. A. M., Mohamed, N. N., Hashim, H., Adnan, S. F. S., Manan, J. A., & Mahmod, R. (2012). A lightweight and secure TFTP protocol for smart environment. In IEEE symposium on computer applications and industrial electronics (ISCAIE), 2012, (pp. 302–306).

  84. 84.

    Kasinathan, P., Pastrone, C., Spirito, M. A., & Vinkovits, M. (2013, October). Denial-of-Service detection in 6LoWPAN based Internet of Things. In Proceedings of IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 600–607).

  85. 85.

    Oliveira, L. M., Rodrigues, J. J., Sousa, A. F., & Lloret, J. (2013). Denial of service mitigation approach for IPv6-enabled smart object networks. Concurrency and Computation: Practice and Experience,25(1), 129–142.

    Article  Google Scholar 

  86. 86.

    Bonetto, R., Bui, N., Lakkundi, V., Olivereau, A., Serbanati, A., & Rossi, M. (2012). Secure communication for smart IoT objects. IEEE international symposium on world of wireless, mobile and multimedia networks (WoWMoM),2012, 1–7.

    Google Scholar 

  87. 87.

    Li, Z., Yin, X., Geng, Z., Zhang, H., Li, P., Sun, Y., et al. (2013). Research on PKI-like protocol for the internet of things. In IEEE fifth international conference on measuring technology and mechatronics automation (ICMTMA), 2013 (pp. 915–918).

  88. 88.

    Pateriya, R. K., & Sharma, S. (2011). An ultralightweight mutual authentication protocol for low Cost RFID tags. International Journal of Computer Applications,2011, 28–35.

    Article  Google Scholar 

  89. 89.

    http://link.springer.com/chapter/10.1007%2F11605805_8#page-1, November 2016.

  90. 90.

    Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., & Verbauwhede, I. (2007). Public-key cryptography for RFID-tags. In Fifth annual IEEE international conference on pervasive computing and communications workshops, 2007 (pp. 217–222).

  91. 91.

    Zhang, X., Li, J., Wu, Y., & Zhang, Q. (2011). An ECDLP-based randomized key RFID authentication protocol. In IEEE international conference on network computing and information security (NCIS), 2011 (pp. 146–149).

  92. 92.

    Liao, Y. P., & Hsiao, C. M. (2014). A secure ECC-based RFID authentication scheme integrated with ID verifier transfer protocol. Ad Hoc Networks,18, 133–146.

    Article  Google Scholar 

  93. 93.

    Porambage, P., Schmitt, C., Kumar, P., Gurtov, A., & Ylianttila, M. (2014). Two-phase authentication protocol for wireless sensor networks in distributed IoT applications. In Proceedings of IEEE 14th international conference on wireless communications and networking (WCNC), 2014, (pp. 2770–2775).

  94. 94.

    Palomar, E., Alcaide, A., Molina, E., & Zhang, Y. (2013). Anonymous authentication for privacy-preserving IoT target-driven applications. Computers & Security,37, 111–123.

    Article  Google Scholar 

  95. 95.

    Alcaide, A., Palomar, E., Montero-Castillo, J., & Ribagorda, A. (2013). Anonymous authentication for privacy-preserving IoT target-driven applications. Computers & Security,37, 111–123.

    Article  Google Scholar 

  96. 96.

    Lin, X. J., Sun, L., & Qu, H. (2015). Insecurity of an anonymous authentication for privacy-preserving IoT target-driven applications. Computers & Security,48, 142–149.

    Article  Google Scholar 

  97. 97.

    Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014, December). Privacy-preserving security framework for a social-aware internet of things. In Proceedings of international conference on ubiquitous computing and ambient intelligence (pp. 408–415). Springer.

  98. 98.

    Celdrán, A. H., Clemente, F. J. G., Pérez, M. G., & Pérez, G. M. (2016). SeCoMan: A semantic-aware policy framework for developing privacy-preserving and context-aware smart applications. IEEE Systems Journal,10(3), 1111–1124.

    Article  Google Scholar 

  99. 99.

    Oh, S. W., & Kim, H. S. (2014). Decentralized access permission control using resource oriented architecture for the web of things. In Proceedings of IEEE 16th international conference on advanced communication technology (ICACT), 2014 (pp. 749–753).

  100. 100.

    Giuliano, R., Mazzenga, F., Neri, A., & A.Vegni, M. (2014). Security access protocols in IoT networks with heterogeneous non-IP terminals. In IEEE international conference on distributed computing in sensor systems (DCOSS), 2014, (pp. 257–262).

  101. 101.

    Hummen, R., Heer, T., & Wehrle, K. (2011). A security protocol adaptation layer for the IP-based internet of things. In Position paper in interconnecting smart objects with the internet workshop, 2011.

  102. 102.

    Zhao, Y. L. (2013). Research on data security technology in IoT. Applied Mechanics and Materials,2013, 1752–1755.

    Google Scholar 

  103. 103.

    Aljawarneh, S., & Yassein, M. B. (2017). A resource-efficient encryption algorithm for multimedia big data. Multimedia Tools and Applications,2017, 1–22.

    Google Scholar 

  104. 104.

    Liu, C., Zhang, Y., & Zhang, H. (2013). A novel approach to IoT security based on immunology. In IEEE 9th international conference on computational intelligence and security (CIS), 2013 (pp. 771–775).

  105. 105.

    Gonizzi, P., Ferrari, G., Gay, V., & Leguay, J. (2013). Data dissemination scheme for distributed storage for IoT observation systems at large scale. Information Fusion,22, 16–25.

    Article  Google Scholar 

  106. 106.

    Zhang, B., Mor, N., Kolb, J., Chan, D. S., Lutz, K., Allman, E., et al. (2015, July). The cloud is not enough: Saving IoT from the cloud. In HotCloud.

  107. 107.

    Jiang, H., Shen, F., Chen, S., Li, K. C., & Jeong, Y. S. (2015). A secure and scalable storage system for aggregate data in IoT. Future Generation Computer Systems,49, 133–141.

    Article  Google Scholar 

  108. 108.

    Venkatesh, J., Aksanli, B., Chan, C. S., Akyürek, A. S., & Rosing, T. S. (2017). Scalable-application design for the IoT. IEEE Software,34(1), 62–70.

    Article  Google Scholar 

  109. 109.

    Jermyn, J., Jover, R. P., Murynets, I., Istomin, M., & Stolfo, S. (2015, June). Scalability of machine to machine systems and the Internet of Things on LTE mobile networks. In Proceedings of IEEE 16th international symposium on world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–9).

  110. 110.

    Souza, V. B. C., Masip-Bruin, X., Marin-Tordera, E., Ramírez, W., & Sánchez-López, S. (2015, June). Towards the scalability of a service-oriented PCE architecture for IoT scenarios. In Proceedings of 20th European conference on networks and optical communications-(NOC) (pp. 1–6).

  111. 111.

    Ray, B. R., Abawajy, J., & Chowdhury, M. (2014). Scalable RFID security framework and protocol supporting Internet of Things. Computer Networks,67, 89–103.

    Article  Google Scholar 

  112. 112.

    An, K., Gokhale, A., Schmidt, D., Tambe, S., Pazandak, P., & Pardo-Castellote, G. (2014). Content-based filtering discovery protocol (CFDP): Scalable and Efficient OMG DDS discovery protocol. In Proceedings of 8th ACM international conference on distributed event-based systems, 2014 (pp. 130–141).

  113. 113.

    Kang, J., S. Yin and Meng, W. (2014). An intelligent storage management system based on cloud computing and IoT. In Proceedings of international conference on computer science and information technology, 2014, pp. 499-505.

  114. 114.

    Nar, P. C., & Cayirci, E. (2005). PCSMAC: A power controlled sensor-MAC protocol for wireless sensor networks. In Proceedings of IEEE second European workshop on wireless sensor networks, 2005 (pp. 81–92).

  115. 115.

    Mota, R. P. B., & Batista, D. M. (2013). A RFID QoS mechanism for IoT tracking applications. In IEEE international symposium on wireless and pervasive computing (ISWPC), 2013 (pp. 1–4).

  116. 116.

    Adame, T., Barrachina, S., Bellalta, B., & Bel, A. (2017). HARE: Supporting efficient uplink multi-hop communications in self-organizing LPWANs. arXiv preprint arXiv: 1701.04673.

  117. 117.

    Liu, X., & Sánchez-Sinencio, E. (2015). An 86% efficiency 12 µw self-sustaining PV energy harvesting system with hysteresis regulation and time-domain MPPT for iot smart nodes. IEEE Journal of Solid-State Circuits,50(6), 1424–1437.

    Article  Google Scholar 

  118. 118.

    Shu, Z., Qian, Y., Yang, Y. L., & Sharif, H. (2016). A game theoretic approach for energy-efficient communications in multi-hop cognitive radio networks. Wireless Communications and Mobile Computing,16(14), 2131–2143.

    Article  Google Scholar 

  119. 119.

    Wei, C., & Li, Y. (2011, September). Design of energy consumption monitoring and energy-saving management system of intelligent building based on the Internet of things. In Proceedings of international conference on electronics, communications and control (ICECC) (pp. 3650–3652).

  120. 120.

    Liu, C. H., Fan, J., Branch, J. W., & Leung, K. K. (2014). Toward qoi and energy-efficiency in internet-of-things sensory environments. IEEE Transactions on Emerging Topics in Computing,2(4), 473–487.

    Article  Google Scholar 

  121. 121.

    Yao, R., Wang, W., Baroughi, M. F., Wang, H., & Qian, Y. (2013). Quality-driven energy-neutralized power and relay selection for smart grid wireless multimodal sensor based IoTs. IEEE Sensors Journal,13, 3637–3644.

    Article  Google Scholar 

  122. 122.

    Duan, J., Gao, D., Yang, D., Foh, C. H., & Chen, H. H. (2014). An energy-aware trust derivation scheme with game theoretic approach. IEEE Internet of Things Journal,1, 58–69.

    Article  Google Scholar 

  123. 123.

    Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications,36, 1531–1539.

    Article  Google Scholar 

  124. 124.

    Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (siot)—When social networks meet the internet of things: Concept, architecture and network characterization. Computer Networks,56(16), 3594–3608.

    Article  Google Scholar 

  125. 125.

    Kokoris-Kogias, E., Voutyras, O., & Varvarigou, T. (2016, September). TRM-SIoT: A scalable hybrid trust & reputation model for the social Internet of Things. In 21st International conference on emerging technologies and factory automation (ETFA) (pp. 1–9).

  126. 126.

    Nitti, M., Girau, R., & Atzori, L. (2014). Trustworthiness management in the social internet of things. IEEE Transactions on Knowledge and Data Engineering,26(5), 1253–1266.

    Article  Google Scholar 

  127. 127.

    Sobin, C. C., Sharma, A., Deepak, S., & Raychoudhary, V. (2015). Socio-physical interaction network (SPIN). In Proceedings of IEEE international conference on advances in computing, communications and informatics (ICACCI), 2015 (pp. 2324–2330).

  128. 128.

    Ning, H., & Liu, H. (2012). Cyber-physical-social based security architecture for future internet of things. Advances in Internet of Things,2(01), 1.

    Article  Google Scholar 

  129. 129.

    Alam, K. M., & El Saddik, A. (2017). C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access.

  130. 130.

    Ortiz, A. M., Ali, D. H., Park, S., Han, S. N., & Crespi, N. (2014). The cluster between internet of things and social networks: Review and research challenges. IEEE Internet of Things Journal,1, 206–215.

    Article  Google Scholar 

  131. 131.

    Misbahuddin, S., Zubairi, J. A., Saggaf, A., Basuni, J., Sulaiman, A., & Al-Sofi, A. (2015). IoT based dynamic road traffic management for smart cities. In 12th international conference on high-capacity optical networks and enabling/emerging technologies (HONET) (pp. 1–5).

  132. 132.

    Miz, V., & Hahanov, V. (2016). Smart traffic light in terms of the cognitive road traffic management system (CTMS) based on the Internet of Things. In Proceedings of IEEE east-west design & test symposium (EWDTS 2014) (pp. 1–5).

  133. 133.

    Pham, T. N., Tsai, M. F., Nguyen, D. B., Dow, C. R., & Deng, D. J. (2015). A cloud-based smart-parking system based on Internet-of-Things technologies. IEEE Access,3, 1581–1591.

    Article  Google Scholar 

  134. 134.

    Kodali, R. K., & Sarjerao, B. S. (2017). A low cost smart irrigation system using MQTT protocol. In IEEE region 10 symposium (TENSYMP) (pp. 1–5).

  135. 135.

    Kamienski, C., Soininen, J. P., Taumberger, M., Dantas, R., Toscano, A., Salmon Cinotti, T., et al. (2019). Smart water management platform: Iot-based precision irrigation for agriculture. Sensors,19(2), 276.

    Article  Google Scholar 

  136. 136.

    Suma, N., Samson, S. R., Saranya, S., Shanmugapriya, G., & Subhashri, R. (2017). IOT based smart agriculture monitoring system. International Journal on Recent and Innovation Trends in Computing and Communication,5(2), 177–181.

    Google Scholar 

  137. 137.

    Rawal, S. (2017). IOT based smart irrigation system. International Journal of Computer Applications,159(8), 7–11.

    Article  Google Scholar 

  138. 138.

    Shekhar, Y., Dagur, E., Mishra, S., & Sankaranarayanan, S. (2017). Intelligent IoT based automated irrigation system. International Journal of Applied Engineering Research,12(18), 7306–7320.

    Google Scholar 

  139. 139.

    Al-Mahdi, H., & Kalil, M. A. (2016). A dynamic hop-aware buffer management scheme for multi-hop ad hoc networks. IEEE Wireless Communications Letters,6, 22–25.

    Google Scholar 

  140. 140.

    Sobin, C. C. (2016). An efficient buffer management policy for DTN. Procedia Computer Science,93, 309–314.

    Article  Google Scholar 

  141. 141.

    Datta, S. K., & Bonnet, C. (2016, May). Integrating named data networking in internet of things architecture. In Proceedings of IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 1–2).

  142. 142.

    Baccelli, E., Mehlis, C., Hahm, O., Schmidt, T C., & Wahlisch, M. (2014, September). Information centric networking in the IoT: Experiments with NDN in the wild. In Proceedings of the 1st international conference on Information-centric networking (pp. 77–86).

  143. 143.

    Chen, D., Chang, G., Sun, D., Li, J., Jia, J., & Wang, X. (2011). TRM-IoT: A trust management model based on fuzzy reputation for internet of things. Computer Science and Information Systems,8(4), 1207–1228.

    Article  Google Scholar 

  144. 144.

    Varghese, R., Chithralekha, T., & Kharkongor, C. (2016, March). Self-organized cluster based energy efficient meta trust model for internet of things. In Proceedings of IEEE international conference on engineering and technology (ICETECH) (pp. 382–389).

  145. 145.

    Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications,36(6), 1531–1539.

    Article  Google Scholar 

  146. 146.

    Domingo, M. C. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications,35(6), 1879–1890.

    Article  Google Scholar 

  147. 147.

    Al-Turjman, F. M., Al-Fagih, A. E., Alsalih, W. M., & Hassanein, H. S. (2013). A delay-tolerant framework for integrated RSNs in IoT. Computer Communications,36(9), 998–1010.

    Article  Google Scholar 

  148. 148.

    Rao, A., Schelén, O., & Lindgren, A. (2016, October). Performance implications for IoT over information centric networks. In Proceedings of the eleventh ACM workshop on challenged networks (pp. 57–62).

  149. 149.

    Mukherjee, A., Paul, H. S., & Dey, S. (2014). ANGELS for distributed analytics in IoT. In IEEE world forum on internet of things (WF-IoT), 2014, (pp. 565–570).

  150. 150.

    Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data. arXiv preprint arXiv: 1301.0159.

Download references

Author information



Corresponding author

Correspondence to C. C. Sobin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sobin, C.C. A Survey on Architecture, Protocols and Challenges in IoT. Wireless Pers Commun 112, 1383–1429 (2020). https://doi.org/10.1007/s11277-020-07108-5

Download citation


  • Internet of Things
  • Architecture
  • Protocols
  • Challenges
  • Security