An Efficient Data Delivery Scheme in WBAN to Deal with Shadow Effect due to Postural Mobility

Abstract

The body movement and change in posture exhibit high mobility in sensor nodes which causes shadowing in the Wireless Body Area Network (WBAN). Due to this, the connectivity between the nodes in WBAN is affected which further causes failure in data delivery. This article presents a MAC protocol in WBAN to deal with the problem of data delivery due to body movement and postural mobility. It uses an Improved Initial Centroid K-means clustering technique for classification of various human body postures followed by back propagation neural network as a classifier to recognize human body posture. This article proposes a posture aware dynamic data delivery (PA-DDD) protocol to deliver data dynamically. The PA-DDD protocol can be used under varying speed walking scenario. The simulation results show that it prolongs the network lifetime and is energy efficient.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Alvarez-Alvarez, A., Trivino, G., & Cordón, O. (2011). Body posture recognition by means of a genetic fuzzy finite state machine. In: 2011 IEEE 5th international workshop on genetic and evolutionary fuzzy systems (GEFS), pp. (60–65). IEEE.

  2. 2.

    Ansari, A.R., & Cho, S. (2014). Human body: The future communication channel for WBAN. In: The 18th IEEE international symposium on consumer electronics (ISCE 2014), (pp. 1–3). IEEE.

  3. 3.

    Argyriou, A., Breva, A. C., & Aoun, M. (2015). Optimizing data forwarding from body area networks in the presence of body shadowing with dual wireless technology nodes. IEEE Transactions on Mobile Computing, 14(3), 632–645.

    Article  Google Scholar 

  4. 4.

    Chen, Y., & Zhao, Q. (2007). An integrated approach to energy-aware medium access for wireless sensor networks. IEEE Transactions on Signal Processing, 55(7), 3429–3444.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Conan, V., Leguay, J., & Friedman, T. (2008). Fixed point opportunistic routing in delay tolerant networks. IEEE Journal on Selected Areas in Communications, 26(5), 773–782.

    Article  Google Scholar 

  6. 6.

    Feng, W., Fengye, H., Lu, W., Yu, D., Xiaolan, L., & Gang, G. (2015). Energy-efficient medium access approach for wireless body area network based on body posture. China Communications, 12(12), 122–132.

    Article  Google Scholar 

  7. 7.

    Hauer, J. H. (2014). Leveraging human mobility for communication in body area networks. ACM Transactions on Sensor Networks (TOSN), 10(3), 39.

    Article  Google Scholar 

  8. 8.

    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  9. 9.

    Hu, T., Zhang, Y., Wang, G., Wang, L., & Fan, X. (2011). Research of a system for monitoring body posture based on wireless sensor networks. In: 2011 7th international conference on wireless communications, networking and mobile computing (WiCOM), (pp. 1–4). IEEE.

  10. 10.

    Janani, K., Dhulipala, V. S., & Chandrasekaran, R. (2011). A WSN based framework for human health monitoring. In: 2011 international conference on devices and communications (ICDeCom), (pp. 1–5). IEEE.

  11. 11.

    Jones, E. P., & Ward, P. A. (2006). Routing strategies for delay-tolerant networks. ACM Computer Communication Review (CCR), (Submitted).

  12. 12.

    Kang, T., Oh, K. I., Park, H., & Kang, S. (2016). Review of capacitive coupling human body communications based on digital transmission. ICT Express, 2(4), 180–187.

    Article  Google Scholar 

  13. 13.

    Kwak, K. S., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15. 6 standard. In: 2010 3rd international symposium on applied sciences in biomedical and communication technologies (ISABEL 2010), (pp. 1–6). IEEE.

  14. 14.

    Leguay, J., Friedman, T., & Conan, V. (2005). Evaluating mobility pattern space routing for dtns. arXiv preprint arXiv:cs/0511102.

  15. 15.

    Leguay, J., Friedman, T., & Conan, V. (2007). Evaluating mobyspace-based routing strategies in delay-tolerant networks. Wireless Communications and Mobile Computing, 7(10), 1171–1182.

    Article  Google Scholar 

  16. 16.

    Li, H., & Sun, Q. (2013). The recognition of moving human body posture based on combined neural network. In IEEE Conference Anthology, (pp. 1–5). IEEE.

  17. 17.

    Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.

    Article  Google Scholar 

  18. 18.

    Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525–533.

    Article  Google Scholar 

  19. 19.

    Nechayev, Y. I., Hall, P. S., Constantinou, C. C., Hao, Y., Alomainy, A., Dubrovka, R., & Parini, C. G. (2005). On-body path gain variations with changing body posture and antenna position. In: 2005 IEEE antennas and propagation society international symposium, (Vol. 1, pp. 731–734). IEEE.

  20. 20.

    Quwaider, M., & Biswas, S. (2010). Dtn routing in body sensor networks with dynamic postural partitioning. Ad Hoc Networks, 8(8), 824–841.

    Article  Google Scholar 

  21. 21.

    Reusens, E., Joseph, W., Vermeeren, G., Martens, L., Latré, B., Moerman, I., Braem, B., & Blondia, C. (2007). Path loss models for wireless communication channel along arm and torso: Measurements and simulations. In: 2007 IEEE antennas and propagation society international symposium, (pp. 345–348).

  22. 22.

    Ryckaert, J., De Doncker, P., Meys, R., de Le Hoye, A., & Donnay, S. (2004). Channel model for wireless communication around human body. Electronics Letters, 40(9), 543–544.

    Article  Google Scholar 

  23. 23.

    Sabti, H. A., & Thiel, D. V. (2014). Node position effect on link reliability for body centric wireless network running applications. IEEE Sensors Journal, 14(8), 2687–2691.

    Article  Google Scholar 

  24. 24.

    Sabti, H. A. A., & Thiel, D. V. (2015). Self-calibrating body sensor network based on periodic human movements. IEEE Sensors Journal, 15(3), 1552–1558.

    Article  Google Scholar 

  25. 25.

    Sharma, N., Singh, K., & Singh, B. (2018). An enhanced-simple protocol for wireless body area networks. Journal of Engineering Science and Technology, 13(1), 196–210.

    Google Scholar 

  26. 26.

    Shen, H., Ding, Z., Dasgupta, S., & Zhao, C. (2014). Multiple source localization in wireless sensor networks based on time of arrival measurement. IEEE Trans Signal Processing, 62(8), 1938–1949.

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yedla, M., Pathakota, S. R., & Srinivasa, T. (2010). Enhancing k-means clustering algorithm with improved initial center. International Journal of Computer Science and Information Technologies, 1(2), 121–125.

    Google Scholar 

  28. 28.

    Zhao, J. F., Chen, X. M., & Liang, B. D. (2017). Chen QX (2017) A review on human body communication: signal propagation model, communication performance, and experimental issues. Wireless Communications and Mobile Computing, 2017, 5842310. https://doi.org/10.1155/2017/5842310.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reema Goyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goyal, R., Patel, R.B., Bhaduria, H.S. et al. An Efficient Data Delivery Scheme in WBAN to Deal with Shadow Effect due to Postural Mobility. Wireless Pers Commun 117, 129–149 (2021). https://doi.org/10.1007/s11277-019-06997-5

Download citation

Keywords

  • Artificial neural network
  • RF technology
  • K-means clustering
  • WBAN
  • More