An Enhanced and Secure Cloud Infrastructure for e-Health Data Transmission

Abstract

The daily rapid malware growth and spread has enforced the security community of antivirus companies to introduce cloud computing technology to their existing protection methods so as to be able to deal with efficiently the active malware threats. A new hybrid security model, based on cloud computing, should be developed to offer optimized protection to the connected users. In this research, we describe our proposed cloud infrastructure and analyze it with mathematical models to export significant diagrams about various metrics. Our cloud model architecture consists of four layers: the master cloud server, the slave servers, the virtual subservers and the users connected to the cloud. Experimental results demonstrate that our proposed layered cloud architecture verifies the trust of its implementation and establishment, due to the fact that it makes the current architecture more lightweight, efficient and secure for e-health data transmission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Caviglione, L., Podolski, M., Mazurczyk, W., & Ianigro, M. (2016). Covert channels in personal cloud storage services: The case of dropbox. IEEE Transactions on Industrial Informatics, 13(4), 1921–1931. https://doi.org/10.1109/TII.2016.2627503.

    Article  Google Scholar 

  2. 2.

    Chen, D. (2017). Research on traffic flow prediction in the big data environment based on the improved RBF neural network. IEEE Transactions on Industrial Informatics, 13(4), 2000–2008. https://doi.org/10.1109/TII.2017.2682855.

    Article  Google Scholar 

  3. 3.

    Chen, H. C. H., & Lee, P. P. C. (2014). Enabling data integrity protection in regenerating-coding-based cloud storage: Theory and implementation. IEEE Transactions on Parallel and Distributed Systems, 25(2), 407–416. https://doi.org/10.1109/TPDS.2013.164.

    Article  Google Scholar 

  4. 4.

    Goswami, K., Lee, J. H., & Kim, B. G. (2016). Fast algorithm for the high efficiency video coding (HEVC) encoder using texture analysis. Information Sciences, 364–365, 72–90. https://doi.org/10.1016/j.ins.2016.05.018.

    Article  Google Scholar 

  5. 5.

    Goudos, S., Dallas, P., Chatziefthymiou, S., & Kyriazakos, S. (2017). A survey of iot key enabling and future technologies: 5g, mobile iot, sematic web and applications. Wireless Personal Communications, 97(2), 1645–1675.

    Article  Google Scholar 

  6. 6.

    He, W., Yan, G., & Xu, L. D. (2014). Developing vehicular data cloud services in the iot environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595. https://doi.org/10.1109/TII.2014.2299233.

    Article  Google Scholar 

  7. 7.

    Hu, P., Ning, H., Qiu, T., Zhang, Y., & Luo, X. (2017). Fog computing based face identification and resolution scheme in internet of things. IEEE Transactions on Industrial Informatics, 13(4), 1910–1920. https://doi.org/10.1109/TII.2016.2607178.

    Article  Google Scholar 

  8. 8.

    Huang, H., Gong, T., Ye, N., Wang, R., & Dou, Y. (2017). Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Transactions on Industrial Informatics, 13(3), 1227–1237. https://doi.org/10.1109/TII.2017.2687618.

    Article  Google Scholar 

  9. 9.

    Jiang, L., Xu, L. D., Cai, H., Jiang, Z., Bu, F., & Xu, B. (2014). An iot-oriented data storage framework in cloud computing platform. IEEE Transactions on Industrial Informatics, 10(2), 1443–1451. https://doi.org/10.1109/TII.2014.2306384.

    Article  Google Scholar 

  10. 10.

    Kim, B. G., Hong, G. S., Park, C. S., & Jang, K. S. (2015). A novel hybrid 3D video service algorithm based on scalable video coding (SVC) technology. Displays, 40, 45–52. https://doi.org/10.1016/j.displa.2015.05.005. Next generation TV systems and technologies.

    Article  Google Scholar 

  11. 11.

    Li, J., Huang, L., Zhou, Y., He, S., & Ming, Z. (2017). Computation partitioning for mobile cloud computing in a big data environment. IEEE Transactions on Industrial Informatics, 13(4), 2009–2018. https://doi.org/10.1109/TII.2017.2651880.

    Article  Google Scholar 

  12. 12.

    Liu, C., Chen, J., Yang, L. T., Zhang, X., Yang, C., Ranjan, R., et al. (2014). Authorized public auditing of dynamic big data storage on cloud with efficient verifiable fine-grained updates. IEEE Transactions on Parallel and Distributed Systems, 25(9), 2234–2244. https://doi.org/10.1109/TPDS.2013.191.

    Article  Google Scholar 

  13. 13.

    Memos, V. A., & Psannis, K. E. (2015). A new methodology based on cloud computing for efficient virus detection. In K. Elleithy & T. Sobh (Eds.), New Trends in Networking, Computing, E-Learning, Systems Sciences, and Engineering (pp. 37–47). Berlin: Springer.

    Google Scholar 

  14. 14.

    Plageras, A. P., Psannis, K. E., Ishibashi, Y. & Kim, B. G. (2016). Iot-based surveillance system for ubiquitous healthcare. In IECON 2016—42nd annual conference of the IEEE industrial electronics society (pp. 6226–6230). https://doi.org/10.1109/IECON.2016.7793281.

  15. 15.

    Seo, S. H., Nabeel, M., Ding, X., & Bertino, E. (2014). An efficient certificateless encryption for secure data sharing in public clouds. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2107–2119. https://doi.org/10.1109/TKDE.2013.138.

    Article  Google Scholar 

  16. 16.

    Stergiou, C., & Psannis, K. E. (2017). Efficient and secure big data delivery in cloud computing. Multimedia Tools and Applications, 76(21), 22803–22822. https://doi.org/10.1007/s11042-017-4590-4.

    Article  Google Scholar 

  17. 17.

    Stergiou, C., & Psannis, K. E. (2017). Recent advances delivered by mobile cloud computing and internet of things for big data applications: A survey. International Journal of Network Management, 27(3), e1930. https://doi.org/10.1002/nem.1930.

    Article  Google Scholar 

  18. 18.

    Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of iot and cloud computing. Future Generation Computer Systems, 78, 964–975. https://doi.org/10.1016/j.future.2016.11.031.

    Article  Google Scholar 

  19. 19.

    Stergiou, C., Psannis, K.E., Plageras, A. P., Kokkonis, G. & Ishibashi, Y. (2017). Architecture for security monitoring in iot environments. In 2017 IEEE 26th international symposium on industrial electronics (ISIE) (pp. 1382–1385). https://doi.org/10.1109/ISIE.2017.8001447.

  20. 20.

    Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., et al. (2017). Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Transactions on Industrial Informatics, 13(5), 2140–2150. https://doi.org/10.1109/TII.2017.2679740.

    Article  Google Scholar 

  21. 21.

    Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S. U., & Li, K. (2016). An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. Journal of Grid Computing, 14(1), 55–74. https://doi.org/10.1007/s10723-015-9334-y.

    Article  Google Scholar 

  22. 22.

    Tao, F., Cheng, Y., Xu, L. D., Zhang, L., & Li, B. H. (2014). CCIoT-CMfg: Cloud computing and internet of things-based cloud manufacturing service system. IEEE Transactions on Industrial Informatics, 10(2), 1435–1442. https://doi.org/10.1109/TII.2014.2306383.

    Article  Google Scholar 

  23. 23.

    Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., et al. (2017). A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039–2047. https://doi.org/10.1109/TII.2017.2670505.

    Article  Google Scholar 

  24. 24.

    Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17–27. https://doi.org/10.1109/MIE.2017.2649104.

    Article  Google Scholar 

  25. 25.

    Wressnegger, C., Freeman, K., Yamaguchi, F., & Rieck, K. (2017). Automatically inferring malware signatures for anti-virus assisted attacks. In Proceedings of the 2017 ACM on Asia conference on computer and communications security, ASIA CCS ’17 (pp. 587–598). New York, NY: ACM. https://doi.org/10.1145/3052973.3053002.

  26. 26.

    Wressnegger, C., Freemany, K., Yamaguchi, F., & Rieck, K. (2017). Automatically inferring malware signatures for anti-virus assisted attacks. In ACM ASIA conference on computer and communications security (CCS).

  27. 27.

    Yaghmaee, M. H., Moghaddassian, M., & Leon-Garcia, A. (2017). Autonomous two-tier cloud-based demand side management approach with microgrid. IEEE Transactions on Industrial Informatics, 13(3), 1109–1120. https://doi.org/10.1109/TII.2016.2619070.

    Article  Google Scholar 

  28. 28.

    Yang, K., & Jia, X. (2013). An efficient and secure dynamic auditing protocol for data storage in cloud computing. IEEE Transactions on Parallel and Distributed Systems, 24(9), 1717–1726. https://doi.org/10.1109/TPDS.2012.278.

    Article  Google Scholar 

  29. 29.

    Zhao, Z., Taal, A., Jones, A., Taylor, I., Stankovski, V., Vega, I. G., et al. (2015). A software workbench for interactive, time critical and highly self-adaptive cloud applications (SWitch). In 2015 15th IEEE/ACM international symposium on cluster, cloud and grid computing (pp. 1181–1184). https://doi.org/10.1109/CCGrid.2015.73.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Psannis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Memos, V.A., Psannis, K.E., Goudos, S.K. et al. An Enhanced and Secure Cloud Infrastructure for e-Health Data Transmission. Wireless Pers Commun 117, 109–127 (2021). https://doi.org/10.1007/s11277-019-06874-1

Download citation

Keywords

  • e-Health
  • Cloud security
  • Cloud model infrastructure
  • Layered cloud architecture
  • Virtualization
  • Mathematical model