Skip to main content
Log in

Broadband Transmitarray for Satellite Applications in Ku Band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the design of a broadband perforated transmitarray for satellite applications in X- and Ku-bands. The transmitarray unit-cell element consists of a dielectric block with four identical holes in the center of each quadrant. These holes are used to control the transmission phase distribution on the array arrangement. An additional circular hole is drilled in the center of each unit-cell element to control the operating frequency of the transmitarray. Two transmitarrays each of 17 × 17 unit-cell elements are designed to operate at a single frequency of 12 GHz or 17.5 GHz. The peak gains of transmitarrays are 25.31 dBi and 27.1 dBi, respectively. Hybrid arrangement consisits of an alternating replacement of the unit-cell elements from the single frequency transmitarrays designed at 12 GHz and 17.5 GHz is designed and investigated. The hybrid arrangement is used to enhance the gain bandwidth of the transmitarray. A broadband gain response is achieved with 2.4 GHz over the band from 12 to 19 GHz. The array structures are fully simulated using the finite integral technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rahmat-Samii, Y., & Densmore, A. C. (2015). Technology trends and challenges of antennas for satellite communication systems. IEEE Transactions on Antennas and Propagation, 63(4, part 1), 1191–1204.

    Article  MathSciNet  MATH  Google Scholar 

  2. Pozar, D. M., & Metzler, T. A. (1993). Analysis of a reflectarray antenna using microstrip patches of variable size. Electronics Letters, 29(8), 657–658.

    Article  Google Scholar 

  3. Turpin, T. W., & Baktur, R. (2009). Meshed patch antennas integrated on solar cells. IEEE Antennas and Wireless Propagation Letters, 8, 693–696.

    Article  Google Scholar 

  4. Ravishankar, S., & Biswagar, P. (2005). Spherical modal analysis of shaped dielectric lens antennas for mobile broadband applications. In Antennas and Propagation Society International Symposium, Vol. 2A, pp. 454–547.

  5. Lau, J. Y., & Hum, S. V. (2011). Analysis and characterization of a multipole reconfigurable transmitarray element. IEEE Transactions on Antennas and Propagation, 59(1), 7–9.

    Article  Google Scholar 

  6. Abdelrahman, A. H., Yang, F., Elsherbeni, A. Z., & Nayeri, P. (2017). Analysis and design of transmitarray antennas. San Rafael: Morgan & Claypool.

    Book  MATH  Google Scholar 

  7. Zainud-Deen, S. H., Gaber, S. M., Abd-Elhady, A. M., Awadalla, K. H., & Kishk, A. A. (2011). Perforated dielectric resonator antenna reflectarray. Applied Computational Electromagnetic Society Journal (ACES), 26(10), 848–855.

    Google Scholar 

  8. Zainud-Deen, S. H., Gaber, Sh M, & Awadalla, K. H. (2012). Transmitarray using perforated dielectric material for wideband applications. Progress In Electromagnetics Research, PIER M, 24, 1–13.

    Article  Google Scholar 

  9. Zainud-Deen, S. H., Gaber, Sh M, Malhat, H. A., & Awadalla, K. H. (2013). Perforated nanoantenna reflectarray. Progress In Electromagnetics Research M, PIER M, 29, 253–265.

    Article  Google Scholar 

  10. Marklein, R. (2002). The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields (pp. 201–244). New York, NY: IEEE Press.

    Google Scholar 

  11. Hagerty, J. D. (1995). Radio telemetry buoy for long-range communication. US Patent 5452262.

  12. Zainud-Deen, S. H., El-Shalaby, N. A., Gaber, S. M., & Malhat, H. A. (2017). Circularly polarized transparent microstrip patch reflectarray integrated with solar cell for satellite applications. International Journal of Microwave Science, ID 6102530, 1–7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., El-Shalaby, N.A.ES. & Malhat, H.A.EA. Broadband Transmitarray for Satellite Applications in Ku Band. Wireless Pers Commun 107, 149–158 (2019). https://doi.org/10.1007/s11277-019-06245-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06245-w

Keywords

Navigation